zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. (English) Zbl 1244.35158
Summary: In this article we analyze the linear stability of nonlinear time-fractional reaction-diffusion systems. As an example, the reaction-subdiffusion model with cubic nonlinearity is considered. By linear stability analysis and computer simulation, it was shown that fractional derivative orders can change substantially an eigenvalue spectrum and significantly enrich nonlinear system dynamics. A overall picture of nonlinear solutions in subdiffusive reaction-diffusion systems is presented.

35R11Fractional partial differential equations
35K57Reaction-diffusion equations
35B35Stability of solutions of PDE
Full Text: DOI
[1] Kilbas, A.; Srivastava, H.; Trujillo, J.: Theory and applications of fractional differential equations, (2006) · Zbl 1092.45003
[2] Agrawal, O. P.; Machado, J. A. Tenreiro; Sabatier, J.: Advances in fractional calculus: theoretical developments and applications in physics and engineering, (2007) · Zbl 1116.00014
[3] Uchaikin, V.: Method of fractional derivatives, (2008) · Zbl 1151.82430
[4] Monje, C. A.; Chen, Y. Q.; Vinagre, B. M.; Xue, D.; Feliu, D.: Fractional-order systems and controls: fundamentals and applications, (2010) · Zbl 1211.93002
[5] Machado, J. Tenreiro; Kiryakova, V.; Mainardi, F.: Recent history of fractional calculus, Commun nonlinear sci numer simulat 16, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[6] Valdes-Parada, F.; Ochoa-Tapia, J.; Alvarez-Ramirez, J.: Effective medium equation for fractional Cattaneo’s diffusion and heterogeneous reaction in disordered porous media, Physica A 369, 318-328 (2006)
[7] Iomin, A.: Toy model of fractional transport of cancer cells due to self-entrapping, Phys rev E 73, 061918-1-5 (2006)
[8] Saenko, V.: New approach to statistical description of fluctuation particle fluxes, Plasma phys rep 35, 1-13 (2009)
[9] Uchaikin, V.; Sibatov, R.: Fractional theory for transport in disordered semiconductors, Commun nonlinear sci numer simulat 13, 715-727 (2008) · Zbl 1221.82141 · doi:10.1016/j.cnsns.2006.07.008
[10] Tavazoei, M.; Haeri, M.; Jafari, S.: Taming single input chaotic system by fractional based controller: theoretical and experimental study, Circ syst sign proc 28, 625-647 (2009) · Zbl 1173.37334 · doi:10.1007/s00034-009-9104-9
[11] Povstenko, Y. Z.: Fractional heat conduction equation and associated thermal stress, J therm stresses 31, 127-148 (2008) · Zbl 1153.74012
[12] Ahmad, B.; Nieto, J.: Existence results for a coupled system of nonlinear fractional differential equations, Comp math appl 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[13] Luchko, Yu: Maximum principle for the general time-fractional diffusion equation, J math anal appl 351, 218-223 (2009) · Zbl 1172.35341 · doi:10.1016/j.jmaa.2008.10.018
[14] Balachandran, K.; Trujillo, J. J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear anal: theor method appl 72, 458793 (2010) · Zbl 1196.34007 · doi:10.1016/j.na.2010.02.035
[15] Sun, H. G.; Chen, W.; Li, C.; Chen, Y. Q.: Fractional differential models for anomalous diffusion, Physica A 389, 2719-2724 (2010)
[16] Sun, H. G.; Chen, W.: Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence, Sci China E 52, 680-683 (2009) · Zbl 05648287
[17] Lubashevsky, I. A.; Kanemoto, S.: Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics, Eur phys J B 76, 69-85 (2010) · Zbl 1202.68315 · doi:10.1140/epjb/e2010-00201-8
[18] Hornung, G.; Berkowitz, B.; Barkai, N.: Morphogen gradient formation in a complex environment: an anomalous diffusion model, Phys rev E 72 (2005)
[19] Kindzelskii, A.; Petty, H.: From the cover: apparent role of traveling metabolic waves in oxidant release by living neutrophils, Proc nat acad sci USA 99, 9207-9212 (2002)
[20] Harris-White, M.; Zanotti, S.; Frautschy, S.; Charles, A.: Spiral intercellular calcium waves in hippocampal slice cultures, J neurophysiol 79, 1045-1052 (1998)
[21] Henry, B. I.; Wearne, S. L.: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction -- diffusion equations, Phys rev E 74, 031116 (2006)
[22] Gafiychuk, V.; Datsko, B.: Pattern formation in a fractional reaction -- diffusion system, Physica A 365, 300-306 (2006)
[23] Henry, B.; Langlands, T.; Wearne, S.: Fractional cable models for neural dendrites, Phys rev lett 100, 128103 (2008) · Zbl 1232.92038
[24] Gafiychuk, V.; Datsko, B.: Spatiotemporal pattern formation in fractional reaction -- diffusion systems with indices of different order, Phys rev E 77, 066210-1-9 (2008)
[25] Langlands, T.; Henry, B.; Wearne, S.: Anomalous subdiffusion with multispecies linear reaction dynamics, Phys rev E 77, 066210-1-9 (2008)
[26] Abad, S.; Yuste, B.; Lindenberg, K.: Reaction -- subdiffusion and reaction -- superdiffusion equations for evanescent particles performing continuous-time random walks, Phys rev E 81, 031115 (2010)
[27] Nicolis, G.; Prigogine, I.: Self-organization in non-equilibrium systems, (1997) · Zbl 0363.93005
[28] Cross, M.; Hohenberg, P.: Pattern formation out of equilibrium, Rev mod phys 65, 851-1112 (1993)
[29] Kerner, B.; Osipov, V.: Autosolitons, (1994)
[30] Gafiychuk, V.; Datsko, B.: Stability analysis and oscillatory structures in time-fractional reaction -- diffusion systems, Phys rev E 75 (2007) · Zbl 1164.35048
[31] Samko, S.; Kilbas, A.; Marichev, O.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[32] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[33] Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of time fractional reaction -- diffusion systems, J comp appl math 372, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[34] Gafiychuk, V.; Datsko, B.; Meleshko, V.; Blackmore, D.: Analysis of the solutions of coupled nonlinear fractional reaction -- diffusion equations, Chaos soliton fract 41, 1095-1104 (2009) · Zbl 1198.35123 · doi:10.1016/j.chaos.2008.04.039