zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in a tumor growth model with delayed responses of the immune system. (English) Zbl 1244.37049
Summary: A simple prey-predator-type model for the growth of tumor with discrete time delay in the immune system is considered. It is assumed that the resting and hunting cells make the immune system. The present model modifies the model of El-Gohary (2008) in that it allows delay effects in the growth process of the hunting cells. Qualitative and numerical analyses for the stability of equilibriums of the model are presented. Length of the time delay that preserves stability is given. It is found that small delays guarantee stability at the equilibrium level (stable focus) but the delays greater than a critical value may produce periodic solutions through Hopf bifurcation and larger delays may even lead to chaotic attractors. Implications of these results are discussed.

MSC:
37N25Dynamical systems in biology
92D25Population dynamics (general)
92C50Medical applications of mathematical biology
WorldCat.org
Full Text: DOI
References:
[1] N. Bellomo, N. K. Li, and P. K. Maini, “On the foundations of cancer modelling: selected topics, speculations, and perspectives,” Mathematical Models & Methods in Applied Sciences, vol. 18, no. 4, pp. 593-646, 2008. · Zbl 1151.92014 · doi:10.1142/S0218202508002796
[2] N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, “Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems,” Mathematical Models & Methods in Applied Sciences, vol. 20, no. 7, pp. 1179-1207, 2010. · Zbl 05781037 · doi:10.1142/S0218202510004568
[3] F. Rihan, “Delay differential models in dynamic diseases,” in Proceedings of the International Conference on Bioinformatics and Computational Biology, pp. 73-79, 2010.
[4] R. de Boer, P. Hoogeweg, H. Dullens, R. de Weger, and W. Den Otter, “Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model,” Journal of Immunology, vol. 134, no. 4, pp. 2748-2758, 1985.
[5] B. Goldstein, J. R. Faeder, and W. S. Hlavacek, “Mathematical and computational models of immune-receptor signalling,” Nature Reviews Immunology, vol. 4, no. 6, pp. 445-456, 2004.
[6] L. G. De Pillis, A. E. Radunskaya, and C. L. Wiseman, “A validated mathematical model of cell-mediated immune response to tumor growth,” Cancer Research, vol. 65, no. 17, pp. 7950-7958, 2005. · doi:10.1158/0008-5472.CAN-05-0564
[7] N. Kronik, Y. Kogan, V. Vainstein, and Z. Agur, “Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics,” Cancer Immunology, Immunotherapy, vol. 57, no. 3, pp. 425-439, 2008. · doi:10.1007/s00262-007-0387-z
[8] J. Aroesty, T. Lincoln, N. Shapiro, and G. Boccia, “Tumor growth and chemotherapy: mathematical methods, computer simulations, and experimental foundations,” Mathematical Biosciences, vol. 17, no. 3-4, pp. 243-300, 1973. · Zbl 0257.92002 · doi:10.1016/0025-5564(73)90072-2
[9] M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, vol. 30 of Lecture Notes in Biomathematics, Springer, Berlin, Germany, 1979. · Zbl 0414.92005
[10] H. Knolle, Cell Kinetic Modelling and the Chemotherapy of Cancer, vol. 75 of Lecture Notes in Biomathematics, Springer, Berlin, Germany, 1988. · Zbl 0658.92001
[11] J. M. Murray, “Optimal control for a cancer chemotherapy problem with general growth and loss functions,” Mathematical Biosciences, vol. 98, no. 2, pp. 273-287, 1990. · Zbl 0693.92009 · doi:10.1016/0025-5564(90)90129-M
[12] J. A. Adam, “The dynamics of growth-factor-modified immune response to cancer growth: one-dimensional models,” Mathematical and Computer Modelling, vol. 17, no. 3, pp. 83-106, 1993. · Zbl 0782.92008 · doi:10.1016/0895-7177(93)90041-V
[13] J. Adam and J. C. Panetta, “A simple mathematical model and alternative paradigm for certain chemotherapeutic regimens,” Mathematical and Computer Modelling, vol. 22, no. 8, pp. 49-60, 1995. · Zbl 0831.92017 · doi:10.1016/0895-7177(95)00154-T
[14] M. R. Owen and J. A. Sherratt, “Modelling the macrophage invasion of tumors: effects on growth and composition,” IMA Journal of Mathemathics Applied in Medicine and Biology, vol. 15, no. 2, pp. 165-185, 1998. · Zbl 0909.92022
[15] L. G. De Pillis and A. Radunskaya, “A mathematical tumor model with immune resistance and drug therapy: an optimal control approach,” Journal of Theoretical Medicine, vol. 3, no. 2, pp. 79-100, 2001. · Zbl 0985.92023 · doi:10.1080/10273660108833067 · eudml:226953
[16] D. Dingli, M. D. Cascino, K. Josić, S. J. Russell, and Z. Bajzer, “Mathematical modeling of cancer radiovirotherapy,” Mathematical Biosciences, vol. 199, no. 1, pp. 55-78, 2006. · Zbl 1086.92024 · doi:10.1016/j.mbs.2005.11.001
[17] S. A. Menchón, R. A. Ramos, and C. A. Condat, “Modeling subspecies and the tumor-immune system interaction: steps toward understanding therapy,” Physica A, vol. 386, no. 2, pp. 713-719, 2007. · doi:10.1016/j.physa.2007.07.010
[18] N. Bellomo and L. Preziosi, “Modelling and mathematical problems related to tumor evolution and its interaction with the immune system,” Mathematical and Computer Modelling, vol. 32, no. 3-4, pp. 413-452, 2000. · Zbl 0997.92020 · doi:10.1016/S0895-7177(00)00143-6
[19] R. P. Araujo and D. L. S. McElwain, “A history of the study of solid tumour growth: the contribution of mathematical modelling,” Bulletin of Mathematical Biology, vol. 66, no. 5, pp. 1039-1091, 2004. · doi:10.1016/j.bulm.2003.11.002
[20] J. D. Nagy, “The ecology and evolutionary biology of cancer: a review of mathematical models of necrosis and tumor cell diversity,” Mathematical Biosciences and Engineering, vol. 2, no. 2, pp. 381-418, 2005. · Zbl 1070.92026 · doi:10.3934/mbe.2005.2.381
[21] H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb, and P. K. Maini, “Modelling aspects of cancer dynamics: a review,” Philosophical Transactions of the Royal Society of London. Series A, vol. 364, no. 1843, pp. 1563-1578, 2006. · doi:10.1098/rsta.2006.1786
[22] F. Castiglione and B. Piccoli, “Cancer immunotherapy, mathematical modeling and optimal control,” Journal of Theoretical Biology, vol. 247, no. 4, pp. 723-732, 2007. · doi:10.1016/j.jtbi.2007.04.003
[23] M. L. Martins, S. C. Ferreira Jr., and M. J. Vilela, “Multiscale models for the growth of avascular tumors,” Physics of Life Reviews, vol. 4, no. 2, pp. 128-156, 2007. · doi:10.1016/j.plrev.2007.04.002
[24] T. Roose, S. J. Chapman, and P. K. Maini, “Mathematical models of avascular tumor growth,” SIAM Review, vol. 49, no. 2, pp. 179-208, 2007. · Zbl 1117.93011 · doi:10.1137/S0036144504446291
[25] M. A. J. Chaplain, “Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation,” in Multiscale Problems in the Life Sciences, vol. 1940 of Lecture Notes in Math., pp. 147-200, Springer, Berlin, Germany, 2008. · Zbl 1264.92025
[26] N. Bellomo, N. K. Li, and P. K. Maini, “On the foundations of cancer modelling: selected topics, speculations, and perspectives,” Mathematical Models & Methods in Applied Sciences, vol. 18, no. 4, pp. 593-646, 2008. · Zbl 1151.92014 · doi:10.1142/S0218202508002796
[27] N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, “Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems,” Mathematical Models & Methods in Applied Sciences, vol. 20, no. 7, pp. 1179-1207, 2010. · Zbl 05781037 · doi:10.1142/S0218202510004568
[28] N. Bellomo and M. Delitala, “From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells,” Physics of Life Reviews, vol. 5, no. 4, pp. 183-206, 2008. · doi:10.1016/j.plrev.2008.07.001
[29] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S. Perelson, “Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,” Bulletin of Mathematical Biology, vol. 56, no. 2, pp. 295-321, 1994. · Zbl 0789.92019 · doi:10.1007/BF02460644
[30] D. Kirschner and J. C. Panetta, “Modeling immunotherapy of the tumor-immune interaction,” Journal of Mathematical Biology, vol. 37, no. 3, pp. 235-252, 1998. · Zbl 0902.92012 · doi:10.1007/s002850050127
[31] R. R. Sarkar and S. Banerjee, “Cancer self remission and tumor stability-a stochastic approach,” Mathematical Biosciences, vol. 196, no. 1, pp. 65-81, 2005. · Zbl 1071.92017 · doi:10.1016/j.mbs.2005.04.001
[32] A. El-Gohary, “Chaos and optimal control of cancer self-remission and tumor system steady states,” Chaos, Solitons and Fractals, vol. 37, no. 5, pp. 1305-1316, 2008. · Zbl 1142.92327 · doi:10.1016/j.chaos.2006.10.060
[33] M. Bodnar, U. Foryś, and J. Poleszczuk, “Analysis of biochemical reactions models with delays,” Journal of Mathematical Analysis and Applications, vol. 376, no. 1, pp. 74-83, 2011. · Zbl 1205.92030 · doi:10.1016/j.jmaa.2010.10.038
[34] U. Foryś, “Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations,” Mathematical Methods in the Applied Sciences, vol. 32, no. 17, pp. 2287-2308, 2009. · Zbl 1181.35129 · doi:10.1002/mma.1137
[35] U. Foryś, M. Bodnar, and J. Poleszczuk, “Negativity of delayed induced oscillations in a simple linear DDE,” Applied Mathematics Letters, vol. 24, no. 6, pp. 982-986, 2011. · Zbl 1218.34079 · doi:10.1016/j.aml.2011.01.010
[36] J. Mi\cekisz, J. Poleszczuk, M. Bodnar, and U. Foryś, “Stochastic models of gene expression with delayed degradation,” Bulletin of Mathematical Biology, vol. 73, no. 9, pp. 2231-2247, 2011. · Zbl 1225.92018 · doi:10.1007/s11538-010-9622-4
[37] M. J. Piotrowska and U. Foryś, “Analysis of the Hopf bifurcation for the family of angiogenesis models,” Journal of Mathematical Analysis and Applications, vol. 382, no. 1, pp. 180-203, 2011. · Zbl 1237.34139 · doi:10.1016/j.jmaa.2011.04.046
[38] M. Piotrowska and U. Forys, “The nature of Hopf bifurcation for the Gompertz model with delays,” Mathematical and Computer Modelling, vol. 54, pp. 9-10, 2011.
[39] J. Poleszczuk, M. Bodnar, and U. Foryś, “New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model,” Mathematical Biosciences and Engineering, vol. 8, no. 2, pp. 591-603, 2011. · Zbl 1259.34011
[40] H. M. Byrne, “The effect of time delays on the dynamics of avascular tumor growth,” Mathematical Biosciences, vol. 144, no. 2, pp. 83-117, 1997. · Zbl 0904.92023 · doi:10.1016/S0025-5564(97)00023-0
[41] N. Burić, M. Mudrinic, and N. Vasović, “Time delay in a basic model of the immune response,” Chaos, solitons and fractals, vol. 12, no. 3, pp. 483-489, 2001. · Zbl 1026.92015 · doi:10.1016/S0960-0779(99)00205-2
[42] U. Foryś and M. Kolev, “Time delays in proliferation and apoptosis for solid avascular tumor,” Prep. institute of applied mathematics and mechanics, rw02-10 (110), Warsaw University, 2002.
[43] M. Gałach, “Dynamics of the tumor-immune system competition-the effect of time delay,” International Journal of Applied Mathematics and Computer Science, vol. 13, no. 3, pp. 395-406, 2003. · Zbl 1035.92019 · eudml:207653
[44] R. Yafia, “Dynamics analysis and limit cycle in a delayed model for tumor growth with quiescence,” Nonlinear Analysis: Modelling and Control, vol. 11, no. 1, pp. 95-110, 2006. · Zbl 1107.92025
[45] J. Paulsson, “Models of stochastic gene expression,” Physics of Life Reviews, vol. 2, no. 2, pp. 157-175, 2005. · doi:10.1016/j.plrev.2005.03.003
[46] E. Gabetta and E. Regazzini, “About the gene families size distribution in a recent model of genome evolution,” Mathematical Models & Methods in Applied Sciences, vol. 20, no. 6, pp. 1005-1020, 2010. · Zbl 1191.92031 · doi:10.1142/S0218202510004519
[47] H. I. Freedman and V. S. H. Rao, “The trade-off between mutual interference and time lags in predator-prey systems,” Bulletin of Mathematical Biology, vol. 45, no. 6, pp. 991-1004, 1983. · Zbl 0535.92024 · doi:10.1007/BF02458826
[48] L. H. Erbe, H. I. Freedman, and V. Sree Hari Rao, “Three-species food-chain models with mutual interference and time delays,” Mathematical Biosciences, vol. 80, no. 1, pp. 57-80, 1986. · Zbl 0592.92024 · doi:10.1016/0025-5564(86)90067-2
[49] N. MacDonald, Time Lags in Biological Models, vol. 27 of Lecture Notes in Biomathematics, Springer, Berlin, Germany, 1978. · Zbl 0403.92020
[50] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, vol. 20 of Lecture Notes in Biomathematics, Springer, Berlin, Germany, 1977. · Zbl 0363.92014
[51] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, USA, 1973.
[52] A. A. El-Gohary, “Optimal control of the genital herpes epidemic,” Chaos, Solitons and Fractals, vol. 12, no. 10, pp. 1817-1822, 2001. · Zbl 0979.92022 · doi:10.1016/S0960-0779(00)00012-6
[53] A. d’Onofrio, “Tumor evasion from immune control: strategies of a MISS to become a MASS,” Chaos, Solitons and Fractals, vol. 31, no. 2, pp. 261-268, 2007. · Zbl 1133.92016 · doi:10.1016/j.chaos.2005.10.006
[54] R. H. Thomlinson, “Measurement and management of carcinoma of the breast,” Clinical Radiology, vol. 33, no. 5, pp. 481-493, 1982.