zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Crossed products by finite group actions with the Rokhlin property. (English) Zbl 1244.46032
Summary: We prove that a number of classes of separable unital C*-algebras are closed under crossed products by finite group actions with the Rokhlin property, including: (a) AI algebras, AT algebras, and related classes characterized by direct limit decompositions using semiprojective building blocks. (b) Simple unital AH algebras with slow dimension growth and real rank zero. (c) C*-algebras with real rank zero or stable rank one. (d) Simple C*-algebras for which the order on projections is determined by traces. (e) C*-algebras whose quotients all satisfy the universal coefficient theorem. (f) C*-algebras with a unique tracial state. Along the way, we give a systematic treatment of the derivation of direct limit decompositions from local approximation conditions by homomorphic images which are not necessarily injective.

46L55Noncommutative dynamical systems
46L35Classifications of $C^*$-algebras
Full Text: DOI arXiv
[1] Archey, D.: Crossed product C*-algebras by finite group actions with a generalized tracial Rokhlin property. Ph.D. Thesis, University of Oregon, Eugene (2008) · Zbl 1238.46051
[2] Blackadar B.: Shape theory for C*-algebras. Math. Scand. 56, 249--275 (1985) · Zbl 0615.46066
[3] Blackadar B.: Symmetries of the CAR algebra. Ann. Math. 131(2), 589--623 (1990) · Zbl 0718.46024 · doi:10.2307/1971472
[4] Blackadar B. : Comparison theory for simple C*-algebras. In: Evans, D.E., Takesaki, M. Takesaki (eds) Operator Algebras and Applications (London Math. Soc. Lecture Notes Series no. 135) Cambridge University Press, pp. 21--54. Cambridge University Press, Cambridge, New York (1988) · Zbl 0706.46043
[5] Blackadar B.: Semiprojectivity in simple C*-algebras. In: Operator Algebras and Applications (Adv. Stud. Pure Math. vol. 38), pp. 1--17. Math. Soc. Japan, Tokyo (2004) · Zbl 1065.46032
[6] Blackadar B., Kumjian A., Rørdam M.: Approximately central matrix units and the structure of non-commutative tori. K-Theory 6, 267--284 (1992) · Zbl 0813.46064 · doi:10.1007/BF00961466
[7] Brown, L.G., Pedersen, G.K.: C*-algebras of real rank zero. J. Funct. Anal. 99, 131--149 (1991) · Zbl 0776.46026 · doi:10.1016/0022-1236(91)90056-B
[8] Brown, L.G., Pedersen, G.K.: On the geometry of the unit ball of a C*-algebra. J. Reine Angew. Math. 469, 113--147 (1995) · Zbl 0834.46041
[9] Brown L.G., Pedersen G.K.: Ideal structure and C*-algebras of low rank. Math. Scand. 100, 5--33 (2007) · Zbl 1162.46026
[10] Dadarlat, M.: Some remarks on the universal coefficient theorem in KK-theory. In: Operator Algebras and Mathematical Physics (Constanţa, 2001), pp. 65--74. Theta, Bucharest (2003) · Zbl 1284.19008
[11] Dǎdǎrlat, M., Eilers, S.: Approximate homogeneity is not a local property. J. Reine Angew. Math. 507, 1--13 (1999) · Zbl 0928.46035
[12] Echterhoff S, Lück W, Phillips N.C, Walters S.: The structure of crossed products of irrational rotation algebras by finite subgroups of $${{$\backslash$rm SL}_2 ({$\backslash$mathbb{Z}})}$$ . J. Reine Angew. Math 639, 173--221 (2010) · Zbl 1202.46081
[13] Eilers, S., Loring, T.A., Pedersen, G.K.: Stability of anticommutation relations. An application of noncommutative CW complexes. J. Reine Angew. Math. 499, 101--143 (1998) · Zbl 0897.46056
[14] Elliott, G.A. A classification of certain simple C*-algebras. In: Araki, H. et al. (eds.) Quantum and Non-Commutative Analysis, pp. 373--385, Kluwer, Dordrecht (1993) · Zbl 0843.46045
[15] Hirshberg I., Rørdam M., Winter W.: C 0(X)-algebras, stability and strongly self-absorbing C*-algebras. Math. Ann. 339, 695--732 (2007) · Zbl 1128.46020 · doi:10.1007/s00208-007-0129-8
[16] Hirshberg, I., Winter, W.: Rokhlin actions and self-absorbing C*-algebras. Pac. J. Math. 233, 125--143 (2007) · Zbl 1152.46056 · doi:10.2140/pjm.2007.233.125
[17] Izumi, M.: Finite group actions on C*-algebras with the Rohlin property, I. Duke Math. J. 122, 233--280 (2004) · Zbl 1067.46058 · doi:10.1215/S0012-7094-04-12221-3
[18] Jeong, J.A.: Purely infinite simple C*-crossed products. Proc. Am. Math. Soc. 123, 3075--3078 (1995) · Zbl 0855.46040
[19] Jeong, J.A., Osaka, H., Phillips, N.C., Teruya, T.: Cancellation for inclusions of C*-algebras of finite depth. Indiana Univ. Math. J. 58, 1537--1564 (2009) · Zbl 1179.46055 · doi:10.1512/iumj.2009.58.3498
[20] Lin H.: An Introduction to the Classification of Amenable C*-Algebras. World Scientific, River Edge, NJ (2001) · Zbl 1013.46055
[21] Lin H.: Classification of simple C*-algebras with tracial topological rank zero. Duke Math. J. 125, 91--119 (2005) · Zbl 1068.46032 · doi:10.1215/S0012-7094-04-12514-X
[22] Loring, T.A.: Lifting Solutions to Perturbing Problems in C*-Algebras (Fields Institute Monographs, vol. 8). American Mathematical Society, Providence (1997) · Zbl 1155.46310
[23] Matui, H., Sato, Y.: $${{$\backslash$mathcal{Z}}}$$ -stability of crossed products by strongly outer actions. preprint (arXiv: 0912.4804v1 [math.OA])
[24] Nagisa, M.: Single generation and rank of C*-algebras. In: Operator Algebras and Applications (Adv. Stud. Pure Math., vol. 38), pp. 135--143. Math. Soc. Japan, Tokyo (2004) · Zbl 1075.46050
[25] Olsen, C.L., Zame, W.R.: Some C*-algebras with a single generator. Trans. Am. Math. Soc. 215, 205--217 (1976) · Zbl 0342.46047
[26] Osaka, H., Phillips, N.C.: Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property. Ergod. Theory Dyn. Syst. 26, 1579--1621 (2006) · Zbl 1116.46059 · doi:10.1017/S0143385706000265
[27] Osaka, H., Phillips, N.C.: Crossed products of simple C*-algebras with tracial rank one by actions with the tracial Rokhlin property (in preparation) · Zbl 1116.46059
[28] Osaka, H., Teruya, T.: Strongly selfabsorbing property for inclusions of C*-algebras with a finite Watatani index preprint (arXiv: 1002.4233v1 [math.OA]) · Zbl 1294.46060
[29] Pasnicu, C., Phillips, N.C.: Crossed products of C*-algebras with the ideal property (in preparation) · Zbl 1316.46050
[30] Pedersen G.K.: Pullback and pushout constructions in C*-algebra theory. J. Funct. Anal. 167, 243--344 (1999) · Zbl 0944.46063 · doi:10.1006/jfan.1999.3456
[31] Phillips, N.C.: The tracial Rokhlin property for actions of finite groups on C*-algebras. Am. J. Math. (to appear) · Zbl 1225.46049
[32] Phillips, N.C.: Finite cyclic group actions with the tracial Rokhlin property. Trans. Am. Math. Soc. (to appear) · Zbl 1328.46058
[33] Phillips, N.C.: Every simple higher dimensional noncommutative torus is an AT algebra. preprint (arXiv: math.OA/0609783)
[34] Phillips, N.C., Viola, M.G.: A simple separable exact C*-algebra not anti-isomorphic to itself. Math. Ann. (to appear) · Zbl 1269.46042
[35] Rieffel, M.A.: Dimension and stable rank in the K-theory of C*-algebras. Proc. Lond. Math. Soc. 46(3), 301--333 (1983) · Zbl 0533.46046 · doi:10.1112/plms/s3-46.2.301
[36] Toms, A.S., Winter, W.: Strongly selfabsorbing C*-algebras. Trans. Am. Math. Soc. 359, 3999--4029(2007) · Zbl 1120.46046 · doi:10.1090/S0002-9947-07-04173-6
[37] Winter, W.: Strongly self-absorbing C*-algebras are $${{$\backslash$mathcal{Z}}}$$ -stable. preprint (arXiv: 0905.0583v1 [math.OA]) · Zbl 1227.46041