×

Sets expressible as unions as staircase \(n\)-convex polygons. (English) Zbl 1244.52009

Summary: Let \(k\) and \(n\) be fixed, \(k\geq 1\), \(n \geq 1\), and let \(S\) be a simply connected orthogonal polygon in the plane. For \(T \subseteq S, T\) lies in a staircase \(n\)-convex orthogonal polygon \(P\) in \(S\) if and only if every two points of \(T\) see each other via staircase \(n\)-paths in \(S\). This leads to a characterization for those sets \(S\) expressible as a union of \(k\) staircase \(n\)-convex polygons \(P_i\), \(1 \leq i \leq k\).

MSC:

52A35 Helly-type theorems and geometric transversal theory
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Breen, M.: A Helly theorem for intersections of sets starshaped via staircase \(n\)-paths. Ars Combinatoria 78 (2006), 47-63. · Zbl 1157.52303
[2] Breen, M.: Intersections and unions of orthogonal polygons starshaped via staircase \(n\)-paths. Monatsh. Math. 148 (2006), 91-100. · Zbl 1134.52007
[3] Breen, M.: Staircase \(k\)-kernels for orthogonal polygons. Arch. Math. 63 (1994), 182-190. · Zbl 0742.52006
[4] Breen, M.: Unions of orthogonally convex or orthogonally starshaped polygons. Geometriae Dedicata 53 (1994), 49-56. · Zbl 0814.52002
[5] Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. Convexity, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 7 (1962), 101-180. · Zbl 0132.17401
[6] Eckhoff, J.: Helly, Radon, and Carathéodory type theorems. Gruber, P. M., Wills, J. M., (eds.) Handbook of Convex Geometry, vol. A, North Holland, New York (1993), 389-448. · Zbl 0791.52009
[7] Hare, W. R., Jr., Kenelly, J. W.: Sets expressible as unions of two convex sets. Proc. Amer. Math. Soc. 25 (1970), 379-380. · Zbl 0195.51603
[8] Lawrence, J. F., Hare, W. R., Jr., Kenelly, J. W.: Finite unions of convex sets. Proc. Amer. Math. Soc. 34 (1972), 225-228. · Zbl 0237.52001
[9] Lay, S. R.: Convex Sets and Their Applications. John Wiley, New York, 1982. · Zbl 0492.52001
[10] McKinney, R. L.: On unions of two convex sets. Canad. J. Math 18 (1966), 883-886. · Zbl 0173.15305
[11] Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star polygons: the perfect graph approach. J. Comput. Syst. Sci. 40 (1990), 19-48. · Zbl 0705.68082
[12] Valentine, F. A.: Convex Sets. McGraw-Hill, New York, 1964. · Zbl 0129.37203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.