×

Common fixed points of generalized contractions on partial metric spaces and an application. (English) Zbl 1244.54090

The authors develop the fixed point theory on partial metric spaces and give some common fixed point theorems for four mappings satisfying the Ćirić type contraction condition. The main result (Theorem 2.1) generalizes the one proved quite recently in [I. Altun, F. Sola and H. Simsek, Topology Appl. 157, No. 18, 2778–2785 (2010); corrigendum ibid. 158, No. 13, 1738–1740 (2011; Zbl 1207.54052)]. At the end of the paper some homotopy results are presented. Under suitable assumptions on a homotopy \(H\) (contractivity and continuity type conditions) the authors prove that \(H(\cdot,0)\) has a fixed point iff \(H(\cdot,1)\) has a fixed point.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)

Citations:

Zbl 1207.54052
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altman, M., An integral test for series and generalized contractions, Am. Math. Mon., 82, 827-829 (1975) · Zbl 0326.40001
[2] Altun, I.; Sola, F.; Simsek, H., Generalized contractions on partial metric spaces, Topol. Appl., 157, 18, 2778-2785 (2010) · Zbl 1207.54052
[3] Babu, G. V.R.; Vara Prasad, K. N.V. V., Common fixed point theorems of different compatible type mappings using Ćirić’s contraction type condition, Math. Commun., 11, 87-102 (2006) · Zbl 1120.47045
[4] Berinde, V., Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math., 25, 2, 157-162 (2009) · Zbl 1249.54078
[5] Ćirić, Lj. B., Generalized contractions and fixed point theorems, Publ. Inst. Math., 12, 19-26 (1971) · Zbl 0234.54029
[6] Heckmann, R., Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct., 7, 71-83 (1999) · Zbl 0993.54029
[7] Jungck, G.; Rhoades, B. E., Fixed points for set valued functions without continiuty, Indian. J. Pur. Appl. Math., 29, 227-238 (1998) · Zbl 0904.54034
[8] S.G. Matthews, Partial metric topology, in: Proceedings Eighth Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 728 (1994) 183-197.; S.G. Matthews, Partial metric topology, in: Proceedings Eighth Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 728 (1994) 183-197. · Zbl 0911.54025
[9] Oltra, S.; Valero, O., Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste., 36, 17-26 (2004) · Zbl 1080.54030
[10] S.J. O’ Neill, Partial metrics, valuations and domain theory, in: Proceedings Eleventh Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 806 (1996) 304-315.; S.J. O’ Neill, Partial metrics, valuations and domain theory, in: Proceedings Eleventh Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 806 (1996) 304-315. · Zbl 0889.54018
[11] Ray, B. K., On Ćirić’s fixed point theorem, Fund. Math., 94, 3, 221-229 (1977) · Zbl 0345.54044
[12] Rhoades, B. E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226, 257-290 (1977) · Zbl 0365.54023
[13] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theor. Appl. (2010), Article ID 493298, 6 pages.; S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theor. Appl. (2010), Article ID 493298, 6 pages. · Zbl 1193.54047
[14] Romaguera, S.; Schellekens, M., Partial metric monoids and semivaluation spaces, Topol. Appl., 153, 5-6, 948-962 (2005) · Zbl 1084.22002
[15] Romaguera, S.; Valero, O., A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. Comput. Sci., 19, 3, 541-563 (2009) · Zbl 1172.06003
[16] Schellekens, M. P., The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci., 315, 135-149 (2004) · Zbl 1052.54026
[17] Singh, S. L.; Mishra, S. N., On a Ljubomir Ćirić’s fixed point theorem for nonexpansive type maps with applications, Indian J. Pure Appl. Math., 33, 531-542 (2002) · Zbl 1030.47042
[18] Valero, O., On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6, 2, 229-240 (2005) · Zbl 1087.54020
[19] Waszkiewicz, P., Partial metrisability of continuous posets, Math. Struct. Comput. Sci., 16, 2, 359-372 (2006) · Zbl 1103.06004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.