Benjamini, Itai; Curien, Nicolas Recurrence of the \(\mathbb{Z}^d\)-valued infinite snake via unimodularity. (English) Zbl 1244.60085 Electron. Commun. Probab. 17, Paper No. 1, 10 p. (2012). Summary: We use the concept of unimodular random graph to show that the branching simple random walk on \(\mathbb{Z}^{d}\) indexed by a critical geometric Galton-Watson tree conditioned to survive is recurrent if and only if \(d \leq 4\). Cited in 6 Documents MSC: 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 05C80 Random graphs (graph-theoretic aspects) Keywords:Galton-Watson trees; random snake; mass-transport; unimodular random graph PDF BibTeX XML Cite \textit{I. Benjamini} and \textit{N. Curien}, Electron. Commun. Probab. 17, Paper No. 1, 10 p. (2012; Zbl 1244.60085) Full Text: DOI arXiv OpenURL