zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations. (English) Zbl 1244.65143
The authors consider an initial-boundary value problem attached to a 2D linear Sobolev type equation. First, they rewrite the problem in a mixed form as a system of lower-order PDEs. Then, they are concerned with a nonconforming finite element approximation of the spatial derivatives coupled with a backward Euler approximation of the time derivative. They claim high accuracy. However, the estimations reported in Theorems 2 and 3 do not seem to be proper for unbounded solutions as is the case with the solution of the numerical example carried out. Their right hand side of these estimations contain integrals with respect to time of the norms of the time derivatives of the exact solution beside the contribution of the initial data.

65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M15Error bounds (IVP of PDE)
35Q35PDEs in connection with fluid mechanics
65M12Stability and convergence of numerical methods (IVP of PDE)
Full Text: DOI
[1] Ewing, R. E.: Time-stepping Galerkin method for nonlinear Sobolev partial-differential equations, SIAM J. Numer. anal. 15, 1125-1150 (1978) · Zbl 0399.65083 · doi:10.1137/0715075
[2] Nakao, M. T.: Error estimate of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. math. 47, 139-157 (1985) · Zbl 0575.65112 · doi:10.1007/BF01389881
[3] Jiang, Z. W.; Chen, H. Z.: Error estimates of mixed finite element methods for Sobolev equation, Northeast. math. J. 17, 301-314 (2001) · Zbl 1029.65102
[4] Cao, Y. H.: The generalized difference scheme for linear sobolive equation in two dimensions, Math. numer. Sin. 27, 243-256 (2005)
[5] Guo, H.; Rui, H. X.: Least-squares Galerkin procedures for Sobolev equations, Acta math. Appl. sin. 29, 610-618 (2006)
[6] Guo, L.; Chen, H. Z.: H1-Galerkin mixed finite element method for the Sobolev equation, J. syst. Sci. math. Sci. 26, 301-314 (2006) · Zbl 1115.65363
[7] Shi, D. Y.; Wang, H. H.; Guo, C.: Anisotropic rectangular nonconforming finite element analysis for Sobolev equations, Appl. math. Mech. 29, 1203-1214 (2008) · Zbl 1221.65260 · doi:10.1007/s10483-008-0909-2
[8] Shi, D. Y.; Wang, H. H.: Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta math. Appl. sin. 25, 335-344 (2009) · Zbl 1187.65131 · doi:10.1007/s10255-007-7065-y
[9] Chen, S. C.; Chen, H. R.: New mixed element schemes for second order elliptic problem, Math. numer. Sin. 32, 213-218 (2010) · Zbl 1224.65260
[10] Ciarlet, P. G.: The finite element method for elliptic problem, (1978) · Zbl 0383.65058
[11] Hale, J. K.: Ordinary differential equations, (1969) · Zbl 0186.40901
[12] Shi, D. Y.; Xie, P. L.; Chen, S. C.: The nonconforming finite element approximation to hyperbolic intergro-differential equations on ansisotropic meshes, Acta math. Appl. sin. 30, 654-666 (2007) · Zbl 1143.65406
[13] Lin, Q.; Yan, N. N.: The construction and analysis of high accurate finite element methods, (1996)
[14] Shi, D. Y.; Mao, S. P.; Chen, S. C.: An anisotropic nonconforming finite element with some superconvergence results, J. comput. Math. 23, 261-274 (2005) · Zbl 1074.65133
[15] Lin, Q.; Lin, J. F.: Finite element methods: accuracy and improvement, (2006)