zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on the eigenvalue analysis of the SIMPLE preconditioning for incompressible flow. (English) Zbl 1244.76094
Summary: We consider the SIMPLE preconditioning for block two-by-two generalized saddle point problems; this is the general nonsymmetric, nonsingular case where the $(1,2)$ block needs not to equal the transposed $(2,1)$ block, and the $(2,2)$ block may not be zero. The eigenvalue analysis of the SIMPLE preconditioned matrix is presented. The relationship between the two different formulations spectrum of the SIMPLE preconditioned matrix is established by using the theory of matrix eigenvalue, and some corresponding results in recent article by {\it C. Li} and {\it C. Vuik} [Numer. Linear Algebra Appl. 11, No. 5-6, 511--523 (2004; Zbl 1164.65398)] are extended.

76M25Other numerical methods (fluid mechanics)
65F08Preconditioners for iterative methods
{\tt SIMPLE}
Full Text: DOI
[1] O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, Fla, USA, 1984. · Zbl 0605.65074
[2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15, Springer, New York, NY, USA, 1991. · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[3] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers, Oxford University Press, Oxford, UK, 2003. · Zbl 1083.76001
[4] W. Zulehner, “Analysis of iterative methods for saddle point problems: a unified approach,” Mathematics of Computation, vol. 71, no. 238, pp. 479-505, 2002. · Zbl 0996.65038 · doi:10.1090/S0025-5718-01-01324-2
[5] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1-137, 2005. · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[6] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, Mass, USA, 1996. · Zbl 1031.65047
[7] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, USA, 1980. · Zbl 0521.76003
[8] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, “Variational iterative methods for nonsymmetric systems of linear equations,” SIAM Journal on Numerical Analysis, vol. 20, no. 2, pp. 345-357, 1983. · Zbl 0524.65019 · doi:10.1137/0720023
[9] C. Vuik, A. Saghir, and G. P. Boerstoel, “The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces,” International Journal for Numerical Methods in Fluids, vol. 33, no. 7, pp. 1027-1040, 2000. · Zbl 0960.76054 · doi:10.1002/1097-0363(20000815)33:7<1027::AID-FLD41>3.0.CO;2-S
[10] C. Li and C. Vuik, “Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow,” Numerical Linear Algebra with Applications, vol. 11, no. 5-6, pp. 511-523, 2004. · Zbl 1164.65398 · doi:10.1002/nla.358
[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, Mass, USA, 1990. · Zbl 0704.15002
[12] L. J. Li, Z. J. Zhang, and L. Li, “A note on the SIMPLE preconditioner for nonsymmetric saddle point problems,” Journal of Information and Computing Science, vol. 5, pp. 153-160, 2010.