×

Analytic solution for MHD Falkner-Skan flow over a porous surface. (English) Zbl 1244.76120

Summary: This paper discusses the MHD Falkner-Skan flow over a porous surface. The solution to nonlinear problem is first constructed and analyzed for the emerging parameters.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. M. Falkner and S.W. Skan, “Some approximate solutions of the boundary layer equations,” Philosophical Magazine, vol. 12, pp. 865-896, 1931. · Zbl 0003.17401
[2] A. Asaithambi, “A finite-difference method for the Falkner-Skan equation,” Applied Mathematics and Computation, vol. 92, no. 2-3, pp. 135-141, 1998. · Zbl 0973.76581 · doi:10.1016/S0096-3003(97)10042-X
[3] S. Abbasbandy and T. Hayat, “Solution of the MHD Falkner-Skan flow by Hankel-Padé method,” Physics Letters A, vol. 373, no. 7, pp. 731-734, 2009. · Zbl 1227.76068 · doi:10.1016/j.physleta.2008.12.045
[4] S. Abbasbandy and T. Hayat, “Solution of the MHD Falkner-Skan flow by homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 9-10, pp. 3591-3598, 2009. · Zbl 1221.76133 · doi:10.1016/j.cnsns.2009.01.030
[5] K. R. Rajagopal, A. S. Gupta, and T. Y. Na, “A note on the Falkner-Skan flows of a non-Newtonian fluid,” International Journal of Non-Linear Mechanics, vol. 18, no. 4, pp. 313-320, 1983. · Zbl 0527.76010 · doi:10.1016/0020-7462(83)90028-8
[6] M. Massoudi and M. Ramezan, “Effect of injection or suction on the Falkner-Skan flows of second grade fluids,” International Journal of Non-Linear Mechanics, vol. 24, no. 3, pp. 221-227, 1989. · Zbl 0693.76003 · doi:10.1016/0020-7462(89)90041-3
[7] K. A. Yih, “Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux,” Acta Mechanica, vol. 128, no. 3-4, pp. 173-181, 1998. · Zbl 0926.76108 · doi:10.1007/BF01251888
[8] B. L. Kuo, “Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method,” International Journal of Heat and Mass Transfer, vol. 48, no. 23-24, pp. 5036-5046, 2005. · Zbl 1189.76141 · doi:10.1016/j.ijheatmasstransfer.2003.10.046
[9] Y. J. Kim, “The Falkner- Skan wedge flows of power-law fluids embedded in a porous medium,” Transport in Porous Media, vol. 44, no. 2, pp. 267-279, 2001. · doi:10.1023/A:1010769604457
[10] T. Hayat, M. Hussain, S. Nadeem, and S. Mesloub, “Falkner-Skan wedge flow of a power-law fluid with mixed convection and porous medium,” Computers & Fluids, vol. 49, no. 1, pp. 22-28, 2011. · Zbl 1271.76011 · doi:10.1016/j.compfluid.2011.01.020
[11] S. Liao, Beyond perturbation, vol. 2, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. · Zbl 1051.76001
[12] S. Liao, “Notes on the homotopy analysis method: some definitions and theorems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 983-997, 2009. · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[13] S. Liao, “On the relationship between the homotopy analysis method and Euler transform,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1421-1431, 2010. · Zbl 1221.65206 · doi:10.1016/j.cnsns.2009.06.008
[14] S. Abbasbandy, “Homotopy analysis method for the Kawahara equation,” Nonlinear Analysis. Real World Applications, vol. 11, no. 1, pp. 307-312, 2010. · Zbl 1181.35224 · doi:10.1016/j.nonrwa.2008.11.005
[15] Y. Tan and S. Abbasbandy, “Homotopy analysis method for quadratic Riccati differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 3, pp. 539-546, 2008. · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[16] I. Hashim, O. Abdulaziz, and S. Momani, “Homotopy analysis method for fractional IVPs,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 674-684, 2009. · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014
[17] A. Sami Bataineh, M. S. M. Noorani, and I. Hashim, “Solving systems of ODEs by homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 10, pp. 2060-2070, 2008. · Zbl 1221.65194 · doi:10.1016/j.cnsns.2007.05.026
[18] A. Sami Bataineh, M. S. M. Noorani, and I. Hashim, “Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method,” Physics Letters A, vol. 371, no. 1-2, pp. 72-82, 2007. · Zbl 1209.65104 · doi:10.1016/j.physleta.2007.05.094
[19] S. Nadeem, S. Abbasbandy, and M. Hussain, “Series solutions of boundary layer flow of a micropolar fluid near the stagnation point towards a shrinking sheet,” Zeitschrift fur Naturforschung A, vol. 64, no. 9-10, pp. 575-582, 2009.
[20] T. Hayat, M. Qasim, and Z. Abbas, “Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2375-2387, 2010. · Zbl 1222.76075 · doi:10.1016/j.cnsns.2009.09.013
[21] S. Nadeem, M. Hussain, and M. Naz, “MHD stagnation flow of a micropolar fluid through a porous medium,” Meccanica, vol. 45, no. 6, pp. 869-880, 2010. · Zbl 1258.76208 · doi:10.1007/s11012-010-9297-9
[22] S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers & Fluids, vol. 39, no. 7, pp. 1219-1225, 2010. · Zbl 1242.76363 · doi:10.1016/j.compfluid.2010.03.004
[23] M. M. Rashidi and E. Erfani, “A new analytical study of MHD stagnation-point flow in porous media with heat transfer,” Computers & Fluids, vol. 40, no. 1, pp. 172-178, 2011. · Zbl 1245.76160 · doi:10.1016/j.compfluid.2010.08.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.