×

Analysis of surface integral equations in electromagnetic scattering and radiation problems. (English) Zbl 1244.78016

Summary: Properties of various surface integral equations of the first and second kinds are studied in electromagnetic scattering and radiation problems. The second-kind equations are found to give better conditioned matrix equation and faster converging iterative solutions but poorer solution accuracy than the first-kind equations. The solution accuracy and matrix conditioning seem to be almost opposite properties associated with the singularity of the kernel of integral operators. The more singular/smoother the kernel, the more/less diagonally dominant and the better/poorer conditioned the matrix, but the poorer/better the solution accuracy. Accuracy of the integral equations of the second kind can be improved by increasing the order of the basis and testing functions. However, the required expansion order seems to be problem dependent. The more singular the unknown, the higher the expansion order and the finer the discretization needed in order to maintain the solution accuracy of the second-kind equations.

MSC:

78M05 Method of moments applied to problems in optics and electromagnetic theory
78A45 Diffraction, scattering
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chew, W. C.; Jin, J.-M.; Michielssen, E.; Song, J., Fast and efficient algorithms in computational electromagnetics (2001), Artech House: Artech House Boston
[2] Chew, W. C.; Chao, H. Y.; Cui, T. J.; Lu, C. C.; Ohnuki, S.; Pan, Y. C., Fast integral equation solvers in computational electromagnetics, Eng Anal Boundary Elem, 27, 803-823 (2003) · Zbl 1045.78004
[3] Zhao, J.-S.; Chew, W. C., Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies, IEEE Trans Antennas Propag, 48, 10, 1635-1645 (2000) · Zbl 1368.78013
[4] Adams, R. J., Physical and analytical properties of a stabilized electric field integral equation, IEEE Trans Antennas Propag, 52, 2, 362-372 (2004) · Zbl 1368.78005
[5] Taskinen, M.; Ylä-Oijala, P., Current and charge integral equation formulation, IEEE Trans Antennas Propag, 54, 1, 58-67 (2006) · Zbl 1369.78309
[6] Poggio, A. J.; Miller, E. K., Integral equation solutions of three-dimensional scattering problems, (Mittra, R., Computer techniques for electromagnetics (1973), Pergamon Press: Pergamon Press Oxford, UK)
[7] Ergül, Ö.; Gürel, L., The use of curl-conforming basis functions for the magnetic-field integral equation, IEEE Trans Antennas Propag, 54, 7, 1917-1926 (2006) · Zbl 1369.78660
[8] Ergül, Ö.; Gürel, L., Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions, Radio Sci, 41, RS4004 (2006)
[9] Davis, C. P.; Warnick, K. F., High-order convergence with a low-order discretization of the 2-D MFIE, IEEE Antennas Wireless Propag Lett, 3, 355-358 (2004)
[10] Ylä-Oijala, P.; Taskinen, M.; Järvenpää, S., Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods, Radio Sci, 40, 6, RS6002 (2005)
[11] Zhu, A.; Gedney, S.; Visher, J. L., A study of combined field formulations for material scattering for a locally corrected Nyström discretization, IEEE Trans Antennas Propag, 53, 12, 4111-4120 (2005)
[13] Ylä-Oijala, P.; Taskinen, M.; Sarvas, J., Surface integral equation method for general composite metallic and dielectric structures with junctions, Prog Electromagn Res, 52, 81-108 (2005)
[14] Sheng, X.-Q.; Jin, J.-M.; Song, J.; Chew, W. C.; Lu, C.-C., Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies, IEEE Trans Antennas Propag, 46, 11, 1718-1726 (1998)
[15] Mautz, J. R.; Harrington, R. F., H-field, E-field and combined-field solutions for conducting bodies of revolution, Arch Elektr Übertragung, 32, 157-164 (1978)
[16] Harrington, R. F., Boundary integral formulations for homogeneous material bodies, J Electromagn Waves Appl, 3, 1, 1-15 (1989)
[17] Kolundzija, B. M.; Djordjevic, A. R., Electromagnetic modeling of composite metallic and dielectric structures (2002), Artech House: Artech House Boston
[18] Ylä-Oijala, P.; Taskinen, M., Application of combined field integral equation for electromagnetic scattering by composite metallic and dielectric objects, IEEE Trans Antennas Propag, 53, 3, 1168-1173 (2005)
[19] Rao, S. M.; Wilton, D. R.; Glisson, A. W., Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans Antennas Propag, AP-30, 3, 409-418 (1982)
[20] Colton, D.; Kress, R., Integral equation methods in scattering theory (1983), Wiley: Wiley New York · Zbl 0522.35001
[21] Hsiao, G. C.; Kleinman, R. E., Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics, IEEE Trans Antennas Propag, 45, 3, 316-328 (1997) · Zbl 0945.78012
[22] Ylä-Oijala, P.; Taskinen, M., Calculation of CFIE impedance matrix elements with RWG and \(n \times \operatorname{RWG}\) functions, IEEE Trans Antennas Propag, 51, 8, 1837-1846 (2003) · Zbl 1368.78124
[23] Caliskan, F.; Peterson, A. F., The need for mixed-order representations with the locally corrected Nyström method, IEEE Antennas Wireless Propag Lett, 2, 72-73 (2003)
[24] Gegney, S. D.; Zhu, A.; Lu, C-C., Study of mixed-order basis functions for the locally corrected Nyström method, IEEE Trans Antennas and Propag, 52, 11, 2996-3004 (2004) · Zbl 1368.78043
[26] Ubeda, E.; Rius, J. M., MFIE MoM-formulation with curl-conforming basis functions and accurate kernel integration in the analysis of perfectly conducting sharp-edged objects, Microwave Opt Technol Lett, 44, 4, 354-358 (2005)
[27] Ylä-Oijala, P.; Taskinen, M., Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects, IEEE Trans Antennas Propag, 53, 10, 3316-3323 (2005) · Zbl 1369.78341
[28] Warnick, K. F.; Peterson, A., Regularization of MFIE in 3D, (IEEE APS 2007 international symposium, Honolulu, Hawaii, USA (June 2007))
[29] Kolundzija, B., Precise modeling of microstrip patch antennas (finite metallization, substrate and ground), (IEEE APS symposium, vol 3, San Antonio, USA (2002)), 434-437
[30] Vandenbosch, G. A.F.; Van de Capelle, A. R., Mixed-potential integral expression formulation of the electric field in a stratified dielectric medium—application to the case of a probe current source, IEEE Trans Antennas Propag, 40, 7, 806-817 (1992)
[31] Jørgensen, E.; Volakis, J. L.; Meincke, P.; Breinbjerg, O., Higher order hierarchical Legendre basis functions for electromagnetic modeling, IEEE Trans Antennas Propag, 52, 11, 2985-2995 (2004) · Zbl 1368.78113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.