×

An improved particle swarm optimization for solving bilevel multiobjective programming problem. (English) Zbl 1244.90251

Summary: An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP). For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed to solve multiobjective optimization problems in the upper level and the lower level interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original problem are found. Finally, some numerical examples are given to illustrate the feasibility of the proposed algorithm.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
90C29 Multi-objective and goal programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Annals of Operations Research, vol. 153, pp. 235-256, 2007. · Zbl 1159.90483 · doi:10.1007/s10479-007-0176-2
[2] L. N. Vicente and P. H. Calamai, “Bilevel and multilevel programming: a bibliography review,” Journal of Global Optimization, vol. 5, no. 3, pp. 291-306, 1994. · Zbl 0822.90127 · doi:10.1007/BF01096458
[3] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, vol. 30, Kluwer Academic, Dordrecht, The Netherlands, 1998. · Zbl 0943.90078
[4] S. Dempe, Foundations of Bilevel Programming, vol. 61 of Nonconvex Optimization and its Applications, Kluwer Academic, Dordrecht, The Netherlands, 2002. · Zbl 1038.90097
[5] S. Dempe, “Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints,” Optimization, vol. 52, no. 3, pp. 333-359, 2003. · Zbl 1140.90493 · doi:10.1080/0233193031000149894
[6] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, UK, 1996.
[7] K. Shimizu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming, Kluwer Academic, Dordrecht, The Netherlands, 1997. · Zbl 0878.90088
[8] B. Colson, P. Marcotte, and G. Savard, “Bilevel programming: a survey,” Quarterly Journal of Operations Research, vol. 3, no. 2, pp. 87-107, 2005. · Zbl 1134.90482 · doi:10.1007/s10288-005-0071-0
[9] G. M. Wang, Z. P. Wan, and X. J. Wang, “Bibliography on bilevel programming,” Advances in Mathematics, vol. 36, no. 5, pp. 513-529, 2007 (Chinese).
[10] L. N. Vicente and P. H. Calamai, “Bilevel and multilevel programming: a bibliography review,” Journal of Global Optimization, vol. 5, no. 3, pp. 291-306, 1994. · Zbl 0822.90127 · doi:10.1007/BF01096458
[11] U. P. Wen and S. T. Hsu, “Linear bi-level programming problems. A review,” Journal of the Operational Research Society, vol. 42, no. 2, pp. 125-133, 1991. · Zbl 0722.90046
[12] A. Koh, “Solving transportation bi-level programs with differential evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’07), pp. 2243-2250, September 2007. · doi:10.1109/CEC.2007.4424750
[13] R. Mathieu, L. Pittard, and G. Anandalingam, “Genetic algorithm based approach to bilevel linear programming,” RAIRO Recherche Opérationnelle, vol. 28, no. 1, pp. 1-21, 1994. · Zbl 0857.90083
[14] V. Oduguwa and R. Roy, “Bi-level optimization using genetic algorithm,” in Proceedings of the IEEE International Conference on Artificial Intelligence Systems, pp. 322-327, 2002.
[15] Y. Wang, Y. C. Jiao, and H. Li, “An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 35, no. 2, pp. 221-232, 2005. · doi:10.1109/TSMCC.2004.841908
[16] Y. Yin, “Genetic-algorithms-based approach for bilevel programming models,” Journal of Transportation Engineering, vol. 126, no. 2, pp. 115-119, 2000. · doi:10.1061/(ASCE)0733-947X(2000)126:2(115)
[17] X. Shi and H. Xia, “Interactive bilevel multi-objective decision making,” Journal of the Operational Research Society, vol. 48, no. 9, pp. 943-949, 1997. · Zbl 0892.90200 · doi:10.1057/palgrave.jors.2600435
[18] X. Shi and H. Xia, “Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers,” Journal of Multi-Criteria Decision Analysis, vol. 10, pp. 27-34, 2001. · Zbl 0985.90054 · doi:10.1002/mcda.285
[19] M. A. Abo-Sinna and I. A. Baky, “Interactive balance space approach for solving multi-level multi-objective programming problems,” Information Sciences, vol. 177, no. 16, pp. 3397-3410, 2007. · Zbl 1278.90350 · doi:10.1016/j.ins.2007.02.005
[20] I. Nishizaki and M. Sakawa, “Stackelberg solutions to multiobjective two-level linear programming problems,” Journal of Optimization Theory and Applications, vol. 103, no. 1, pp. 161-182, 1999. · Zbl 0945.90057 · doi:10.1023/A:1021729618112
[21] Y. Zheng, Z. Wan, and G. Wang, “A fuzzy interactive method for a class of bilevel multiobjective programming problem,” Expert Systems with Applications, vol. 38, pp. 10384-10388, 2011. · doi:10.1016/j.eswa.2011.02.069
[22] G. Eichfelder, “Solving nonlinear multi-objective bi-level optimization problems with coupled upper level constraints,” Technical Report 320, Institute of Applied Mathematics, University Erlangen-Nrnberg, Germany, 2007.
[23] G. Eichfelder, “Multiobjective bilevel optimization,” Mathematical Programming. A Publication of the Mathematical Programming Society, vol. 123, no. 2, pp. 419-449, 2010. · Zbl 1198.90347 · doi:10.1007/s10107-008-0259-0
[24] K. Deb and A. Sinha, “Constructing test problems for bilevel evolutionary multi-objective optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’09), pp. 1153-1160, May 2009. · doi:10.1109/CEC.2009.4983076
[25] K. Deb and A. Sinha, “Solving bilevel multiobjective optimization problems using evolutionary algorithms,” in Proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization (EMO ’09), vol. 5467 of Lecture Notes in Computer Science, pp. 110-124, 2009.
[26] K. Deb and A. Sinha, “An evolutionary approach for bilevel multiobjective problems,” in Cutting-Edge Research Topics on Multiple Criteria Decision Making, vol. 35 of Communications in Computer and Information Science, pp. 17-24, Berlin, Germany, 2009. · doi:10.1007/978-3-642-02298-2_3
[27] A. Sinha and K. Deb, “Towards understanding evolutionary bilevel multiobjective optimization algorithm,” Technical Report 2008006, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India, 2008.
[28] K. Deb and A. Sinha, “An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary local-search algorithm,” Technical Report 2009001, 2009.
[29] A. Sinha, “Bilevel multi-objective optimization problem solving using progressively interactive EMO,” in Proceedings of the 6th International Conference on Evolutionary Multi-Criterion Optimization (EMO ’11), vol. 6576, pp. 269-284, 2011. · doi:10.1007/978-3-642-19893-9_19
[30] J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, Calif, USA, 2001.
[31] X. Li, P. Tian, and X. Min, “A hierarchical particle swarm optimization for solving bilevel programming problems,” in Proceedings of the 8th International Conference on Artificial Intelligence and Soft Computing (ICAISC ’06), vol. 4029 of Lecture Notes in Computer Science, pp. 1169-1178, 2006. · doi:10.1007/11785231_122
[32] R. J. Kuo and C. C. Huang, “Application of particle swarm optimization algorithm for solving bi-level linear programming problem,” Computers & Mathematics with Applications, vol. 58, no. 4, pp. 678-685, 2009. · Zbl 1189.90212 · doi:10.1016/j.camwa.2009.02.028
[33] Y. Gao, G. Zhang, J. Lu, and H. M. Wee, “Particle swarm optimization for bi-level pricing problems in supply chains,” Journal of Global Optimization, vol. 51, pp. 245-254, 2011. · Zbl 1230.90179 · doi:10.1007/s10898-010-9595-8
[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002. · doi:10.1109/4235.996017
[35] K. Deb, “Multi-objective optimization using evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, 2002. · doi:10.1109/4235.996017
[36] K. Deb and A. Sinha, “Solving bilevel multi-objective optimization problems using evolutionary algorithms,” Kangal Report, 2008.
[37] G. Zhang, J. Liu, and T. Dillon, “Decentralized multi-objective bilevel decision making with fuzzy demands,” Knowledge-Based Systems, vol. 20, pp. 495-507, 2007. · doi:10.1016/j.knosys.2007.01.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.