×

zbMATH — the first resource for mathematics

Thoughts about selected models for the valuation of real options. (English) Zbl 1244.91088
Summary: We discuss option valuation logic and four selected methods for the valuation of real options in the light of their modeling choices. Two of the selected methods the Datar-Mathews method and the fuzzy pay-off method represent later developments in real option valuation and the Black-Scholes formula and the binomial model for option pricing the more established methods used in real option valuation. The goal of this paper is to understand the big picture of real option valuation models used today and to discuss modeling perspectives for the future.

MSC:
91G20 Derivative securities (option pricing, hedging, etc.)
91G80 Financial applications of other theories
91G60 Numerical methods (including Monte Carlo methods)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Anscombe, F. J., Aumann, R. J.: A definition of subjective probability. The Annals of Mathematical Statistics 34 (1963), 199-205. · Zbl 0114.07204 · doi:10.1214/aoms/1177704255
[2] Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy 81 (1973), 637-659. · Zbl 1092.91524 · doi:10.1086/260062 · www.journals.uchicago.edu
[3] Borison, A.: Real options analysis: Where are the emperor’s clothes?. Journal of Applied Corporate Finance 17 (2005), 17-31. · doi:10.1111/j.1745-6622.2005.00029.x
[4] Collan, M., Fullér, R., Mezei, J.: A Fuzzy Pay-Off Method for Real Option Valuation. IEEE International Conference on Business Intelligence and Financial Engineering, IEEE, Beijing, PRC, 2009, 165-169. · Zbl 1175.91070 · doi:10.1155/2009/238196 · eudml:226092
[5] Collan, M., Fullér, R., Mezei, J.: Fuzzy pay-off method for real option valuation. Journal of Applied Mathematics and Decision Systems 2009, doi: 10.1155/2009/238196 (2009), Article ID 238196, 1-14. · Zbl 1175.91070 · doi:10.1155/2009/238196 · eudml:226092
[6] Cox, J., Ross, S., Rubinstein, M.: Option pricing: A simplified approach. Journal of Financial Economics 7 (1979), 229-263. · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[7] Datar, V., Mathews, S.: European real options: An intuitive algorithm for the black Scholes formula. Journal of Applied Finance 14 (2004), 7-13.
[8] Datar, V., Mathews, S., Johnson, B.: A practical method for valuing real options: The Boeing approach. Journal of Applied Corporate Finance 19 (2007), 95-104. · doi:10.1111/j.1745-6622.2007.00140.x
[9] Dorweiler, P.: A survey on risk credibility in experience rating. Proceedings of the Casualty Actuarial Society 21 (1934), 1-25.
[10] Dubofsky, D. A., Miller, T. W.: Derivatives - Valuation and Risk Management. Oxford University Press, New York, 2003.
[11] Kulatilaka, N., Marcus, A.: Project valuation under uncertainty: When does DCF fail?. Journal of Applied Corporate Finance 5 (1992), 92-100. · doi:10.1111/j.1745-6622.1992.tb00229.x
[12] Nau, R.: De Finetti was right: probability does not exist. Theory and Decision 51 (2002), 89-124. · Zbl 1032.91567 · doi:10.1023/A:1015525808214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.