zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability of Boolean control networks via the Perron-Frobenius theory. (English) Zbl 1244.93026
Summary: Boolean Control Networks (BCNs) are recently attracting considerable interest as computational models for genetic and cellular networks. Addressing control-theoretic problems in BCNs may lead to a better understanding of the intrinsic control in biological systems, as well as to developing suitable protocols for manipulating biological systems using exogenous inputs. We introduce two definitions for controllability of a BCN, and show that a necessary and sufficient condition for each form of controllability is that a certain nonnegative matrix is irreducible or primitive, respectively. Our analysis is based on a result that may be of independent interest, namely, a simple algebraic formula for the number of different control sequences that steer a BCN between given initial and final states in a given number of time steps, while avoiding a set of forbidden states.

90C59Approximation methods and heuristics
93B03Attainable sets
92C42Systems biology, networks
15B48Positive matrices and their generalizations; cones of matrices
Full Text: DOI
[1] Akutsu, T.; Hayashida, M.; Ching, W. -K.; Ng, M. K.: Control of Boolean networks: hardness results and algorithms for tree structured networks, Journal of theoretical biology 244, 670-679 (2007)
[2] Albert, R.; Othmer, H. G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, Journal of theoretical biology 223, 1-18 (2003)
[3] Barabanov, N.E. (2005). Lyapunov exponent and joint spectral radius: Some known and new results. In Proc. 44th IEEE conf. on decision and control (pp. 2332--2337). Seville, Spain.
[4] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences, (1987) · Zbl 0484.15016
[5] Bernstein, D. S.: Matrix mathematics, (2005) · Zbl 1075.15001
[6] Bolouri, H.: Computational modelling of gene regulatory networks-a primer, (2008)
[7] Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations, Journal of the royal society interface 5, S85-S94 (2008)
[8] Chaos, A.; Aldana, M.; Espinosa-Soto, C.; De Leon, B. G. P.; Arroyo, A. G.; Alvarez-Buylla, E. R.: From genes to flower patterns and evolution: dynamic models of gene regulatory networks, Journal of plant growth regulation 25, 278-289 (2006)
[9] Chaves, M.; Albert, R.; Sontag, E. D.: Robustness and fragility of Boolean models for genetic regulatory networks, Journal of theoretical biology 235, 431-449 (2005)
[10] Cheng, D.: Disturbance decoupling of Boolean control networks, IEEE transactions on automatic control 56, 2-10 (2011)
[11] Cheng, D.: Input-state approach to Boolean networks, IEEE transactions on neural networks 20, 512-521 (2009)
[12] Cheng, D.; Dong, Y.: Semi-tensor product of matrices and its some applications to physics, Methods and applications of analysis 10, 565-588 (2003) · Zbl 1073.15532
[13] Cheng, D.; Li, Z.; Qi, H.: Realization of Boolean control networks, Automatica 46, 62-69 (2010) · Zbl 1214.93031 · doi:10.1016/j.automatica.2009.10.036
[14] Cheng, D.; Qi, H.: Controllability and observability of Boolean control networks, Automatica 45, 1659-1667 (2009) · Zbl 1184.93014 · doi:10.1016/j.automatica.2009.03.006
[15] Cheng, D.; Qi, H.: A linear representation of dynamics of Boolean networks, IEEE transactions on automatic control 55, 2251-2258 (2010)
[16] Cheng, D.; Qi, H.: State-space analysis of Boolean networks, IEEE transactions on neural networks 21, 584-594 (2010)
[17] Cheng, D.; Qi, H.; Li, Z.: Analysis and control of Boolean networks, (2011) · Zbl 1209.93001
[18] Datta, A.; Pal, R.; Choudhary, A.; Dougherty, E. R.: Control approaches for probabilistic gene regulatory networks, IEEE signal processing magazine 24, 54-63 (2010)
[19] Espinosa-Soto, C.; Padilla-Longoria, P.; Alvarez-Buylla, E. R.: A gene regulatory network model for cell--fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles, Plant cell 16, 2923-2939 (2004)
[20] Faure, A.; Naldi, A.; Chaouiya, C.; Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics 22, e124-e131 (2006)
[21] Fornasini, E.; Valcher, M. E.: Reachability of a class of discrete-time positive switched systems, SIAM journal on control and optimization 49, 162-184 (2011) · Zbl 1215.93017 · doi:10.1137/090757551
[22] Green, D.G., Leishman, T.G., & S, Sadedin (2007). The emergence of social consensus in Boolean networks. In IEEE symp. artificial life (ALIFE’07) (pp. 402--408). Honolulu, HI.
[23] Gupta, S.; Bisht, S. S.; Kukreti, R.; Jain, S.; Brahmachari, S. K.: Boolean network analysis of a neurotransmitter signaling pathway, Journal of theoretical biology 244, 463-469 (2007)
[24] Hassoun, M. H.: Fundamentals of artificial neural networks, (1995) · Zbl 0850.68271
[25] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985) · Zbl 0576.15001
[26] Huang, S.: Regulation of cellular states in mammalian cells from a genomewide view, Gene regulation and metabolism, 181-220 (2002)
[27] Kailath, T.: Linear systems, (1980) · Zbl 0454.93001
[28] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of theoretical biology 22, 437-467 (1969)
[29] Kauffman, S.: Differentiation of malignant to benign cells, Journal of theoretical biology 31, 429-451 (1971)
[30] Kauffman, S.; Peterson, C.; Samuelsson, B.; Troein, C.: Random Boolean network models and the yeast transcriptional network, Proceedings of the national Academy of sciences of the united states of America 100, 14796-14799 (2003)
[31] Langmead, C. J.; Jha, S. K.: Symbolic approaches for finding control strategies in Boolean networks, Journal of bioinformatics and computational biology 7, 323-338 (2009)
[32] Laschov, D.; Margaliot, M.: A maximum principle for single-input Boolean control networks, IEEE transactions on automatic control 56, 913-917 (2011)
[33] Laschov, D., & Margaliot, M. (2011b). A Pontryagin maximum principle for multi-input Boolean control networks. In (E. Kaslik and S. Sivasundaram), (Eds.) Recent advances in dynamics and control of neural networks. Cambridge Scientific Publishers (in press).
[34] Li, S.; Assmann, S. M.; Albert, R.: Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling, Plos biology 4, 1732-1748 (2006)
[35] Li, F.; Long, T.; Lu, Y.; Ouyang, Q.; Tang, C.: The yeast cell--cycle network is robustly designed, Proceedings of the national Academy of sciences of the united states of America 101, 4781-4786 (2004)
[36] Li, F.; Sun, J.: Controllability of Boolean control networks with time delays in states, Automatica 47, 603-607 (2011) · Zbl 1220.93010 · doi:10.1016/j.automatica.2011.01.040
[37] Liu, Q.; Guo, X.; Zhou, T.: Optimal control for probabilistic Boolean networks, IET systems biology 4, 99-107 (2010)
[38] Margaliot, M.: Stability analysis of switched systems using variational principles: an introduction, Automatica 42, 2059-2077 (2006) · Zbl 1104.93018 · doi:10.1016/j.automatica.2006.06.020
[39] Margaliot, M.; Branicky, M. S.: Nice reachability for planar bilinear control systems with applications to planar linear switched systems, IEEE transactions on automatic control 54, 1430-1435 (2009)
[40] Margaliot, M.; Liberzon, D.: Lie--algebraic stability conditions for nonlinear switched systems and differential inclusions, Systems and control letters 55, 8-16 (2006) · Zbl 1129.93521 · doi:10.1016/j.sysconle.2005.04.011
[41] Monovich, T.; Margaliot, M.: Analysis of discrete-time linear switched systems: a variational approach, SIAM journal on control and optimization 49, 808-829 (2011) · Zbl 1217.93099 · doi:10.1137/090776950
[42] Monovich, T.; Margaliot, M.: A second-order maximum principle for discrete-time bilinear control systems with applications to discrete-time linear switched systems, Automatica 47, 1489-1495 (2011) · Zbl 1220.49013 · doi:10.1016/j.automatica.2011.02.025
[43] Sharon, Y.; Margaliot, M.: Third-order nilpotency, finite switchings and asymptotic stability, Journal of differential equations 233, 136-150 (2007) · Zbl 1109.49002 · doi:10.1016/j.jde.2006.10.011
[44] Shmulevich, I.; Dougherty, E. R.; Kim, S.; Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks, Bioinformatics 18, 261-274 (2002)
[45] Shmulevich, I.; Dougherty, E. R.; Zhang, W.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of IEEE 90, 1778-1792 (2002)
[46] Szallasi, Z.; Liang, S.: Modeling the normal and neoplastic cell cycle with realistic Boolean genetic networks: their application for understanding carcinogenesis and assessing therapeutic strategies, Pac. symp. Biocomput. 3, 66-76 (1998)
[47] Zhao, Y.; Qi, H.; Cheng, D.: Input-state incidence matrix of Boolean control networks and its applications, Systems and control letters 59, 767-774 (2010) · Zbl 1217.93026 · doi:10.1016/j.sysconle.2010.09.002