zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent observer-based $H_{\infty }$ finite-time control for switched systems with time-varying delay. (English) Zbl 1244.93045
Summary: This paper is concerned with the problem of observer design for switched linear systems with time-varying delay and exogenous disturbances. The attention is focused on designing the full-order observers that guarantee the finite-time bounded and $H_{\infty }$ finite-time stability of the dynamic augmented system. Based on Linear Matrix Inequalities (LMIs) technology and an Average Dwell Time (ADT) approach, sufficient conditions which ensure the observer-based finite-time bounded and $H_{\infty }$ finite-time stability are given, respectively. By using a state observer, the memory state feedback controller is designed to finite-time stabilize a time-delay switched system, and the conditions are formulated in terms of delay-dependent LMIs. An example is given to illustrate the efficiency of the proposed methods.

93C30Control systems governed by other functional relations
93B52Feedback control
Full Text: DOI
[1] Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems, IEEE control systems magazine 19, No. 5, 59-70 (1999)
[2] Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, No. 2, 308-322 (2009)
[3] Sun, Z. D.; Ge, S. S.: Analysis and synthesis of switched linear control systems, Automatica 41, No. 2, 181-195 (2005) · Zbl 1074.93025 · doi:10.1016/j.automatica.2004.09.015
[4] Lian, J.; Feng, Z.; Shi, P.: Observer design for switched recurrent neural networks: an average Dwell time approach, IEEE transactions on neural networks 22, No. 10, 1547-1556 (2011)
[5] Zhang, L.; Shi, P.: Stability, L2 gain and asynchronous control of discrete-time switched systems with average Dwell time, IEEE transactions on automatic control 54, 2193-2200 (2009)
[6] Zhang, L.; Boukas, E.; Shi, P.; Chen, Z.: A ${\mu}$-dependent approach to H$\infty $ control of uncertain switched linear systems with average Dwell time, Optimal control applications and methods 32, No. 1, 15-27 (2011) · Zbl 1213.93045 · doi:10.1002/oca.919
[7] Zhang, L.; Boukas, K.; Shi, P.: A ${\mu}$-dependent model reduction for uncertain discrete-time switched linear systems with average Dwell time, International journal of control 82, No. 2, 378-388 (2009) · Zbl 1168.93320 · doi:10.1080/00207170802126856
[8] Zhang, L.; Jiang, B.: Stability of a class of switched linear systems with uncertainties and average Dwell time switching, International journal of innovative computing, information and control 6, No. 2, 667-676 (2010)
[9] Zhang, L.; Gao, H.: Asynchronously switched control of switched linear systems with average Dwell time, Automatica 46, No. 5, 953-958 (2010) · Zbl 1191.93068 · doi:10.1016/j.automatica.2010.02.021
[10] A. Zappavigna, P. Colaneri, J.C. Geromel, R. Shorten, Dwell time analysis for continuous-time switched linear positive systems, in: Proceedings of the 2010 American Control Conference Baltimore, 2010, pp. 6256--6261.
[11] Morse, A. S.: Supervisory control of families of linear set-point controllers, part 1: exact matching, IEEE transactions on automatic control 41, 1413-1431 (1996) · Zbl 0872.93009 · doi:10.1109/9.539424
[12] Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE transactions on automatic control 43, 475-482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[13] Ye, H.; Michel, A. N.; Hou, L.: Stability theory for hybrid dynamic systems, IEEE transactions on automatic control 43, 461-474 (1998) · Zbl 0905.93024 · doi:10.1109/9.664149
[14] Narendra, K. S.; Balakrishnan, J. A.: Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE transactions on automatic control 39, 2469-2471 (1994) · Zbl 0825.93668 · doi:10.1109/9.362846
[15] Fridman, E.; Shaked, U.: An improved stabilization method for linear time-delay systems, IEEE transactions on automatic control 47, No. 11, 1931-1937 (2002)
[16] Liu, M.; Ho, Daniel W. C.; Niu, Yugang: Stabilization of Markovian jump linear system over networks with random communication delay, Automatica 45, No. 2, 416-421 (2009) · Zbl 1158.93412 · doi:10.1016/j.automatica.2008.06.023
[17] Chen, J. D.; Yang, C. D.; Lien, C. H.; Horng, J. H.: New delay-dependent non-fragile H$\infty $ observer-based control for continuous time-delay systems, Information sciences 178, 4699-4706 (2008) · Zbl 1158.93017 · doi:10.1016/j.ins.2008.08.009
[18] Mahmoud, M. S.: Delay-dependent H$\infty $ filtering of a class of switched discrete-time state delay systems, Signal processing 88, 2709-2719 (2008) · Zbl 1151.93338 · doi:10.1016/j.sigpro.2008.05.014
[19] Liu, J.; Liu, X. Z.; Xie, W. C.: Delay-dependent robust control for uncertain switched systems with time-delay, Nonlinear analysis: hybrid systems 2, 81-95 (2008) · Zbl 1157.93362 · doi:10.1016/j.nahs.2007.04.001
[20] Sun, Y. G.; Wang, L.; Xie, G. M.: Delay-dependent robust stability and stabilization for discrete-time switched systems with mode-dependent time-varying delays, Applied mathematics and computation 180, 428-435 (2006) · Zbl 1100.93034 · doi:10.1016/j.amc.2005.12.028
[21] Zhang, L.; Boukas, E.; Haidar, A.: Delay-range-dependent control synthesis for time-delay systems with actuator saturation, Automatica 44, No. 10, 2691-2695 (2008) · Zbl 1155.93350 · doi:10.1016/j.automatica.2008.03.009
[22] Liu, Z.; Zhang, H.; Sun, Q.; Yang, D.: Output feedback switching controller design for state-delayed linear systems with input quantization and disturbances, ICIC express letters 4, No. 5B, 1791-1798 (2010)
[23] Fridman, E.; Shaked, U.: Delay-dependent stability and H$\infty $ control: constant and time-varying delays, International journal of control 76, No. 1, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[24] Mahmoud, M. S.: Switched discrete-time systems with time-varying delays: a generalized H2 approach, Computers and mathematics with applications 57, 79-95 (2009) · Zbl 1165.93309 · doi:10.1016/j.camwa.2008.10.066
[25] Liu, D. Y.; Zhong, S. M.; Liu, X. Z.; Huang, Y. Q.: Stability analysis for uncertain switched neutral systems with discrete time-varying delay: a delay-dependent method, Mathematics and computers in simulation 80, 436-448 (2009) · Zbl 1185.34105 · doi:10.1016/j.matcom.2009.08.002
[26] Qiu, J.; Feng, G.; Yang, J.: New results on robust energy-to-peak filtering for discrete-time switched polytopic linear systems with time-varying delay, IET control theory and applications 2, No. 9, 795-806 (2008)
[27] Michel, A. N.; Wu, S. H.: Stability of discrete systems over a finite interval of time, International journal of control 9, 679-693 (1969) · Zbl 0174.40404 · doi:10.1080/00207176908905789
[28] Weiss, L.; Infante, E. F.: Finite time stability under perturbing forces and on product spaces, IEEE transaction on automatic control 12, No. 1, 54-59 (1967) · Zbl 0168.33903
[29] P. Dorato, Short time stability in linear time-varying systems, in: Proceedings of the IRE International Convention Record Part 4, 1961, pp. 83--87.
[30] He, S. P.; Liu, F.: Robust finite-time stabilization of uncertain fuzzy jump systems, International journal of innovative computing, information and control 6, No. 9, 3853-3862 (2010)
[31] Li, S. H.; Wang, Z.; Fei, S. M.: Finite-time control of a bioreactor system using terminal sliding mode, International journal of innovative computing, information and control 5, No. 10B, 3495-3504 (2009)
[32] Lin, X. Z.; Du, H. B.; Li, S. H.: Finite-time boundedness and L2-gain analysis for switched delay systems with norm-bounded disturbance, Applied mathematics and computation 217, 5982-5993 (2011) · Zbl 1218.34082 · doi:10.1016/j.amc.2010.12.032
[33] Xiang, W. M.; Xiao, J.: H$\infty $ finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance, Journal of the franklin institute 348, 331-352 (2011) · Zbl 1214.93043 · doi:10.1016/j.jfranklin.2010.12.001
[34] J. Yu, L. Wang, M. Yu, Y. Jia, J. Chen, Packet-loss dependent controller design for networked control systems via switched system approach. in: Proceedings of 47th IEEE Conference on Decision and Control, 2008, pp. 3354--3359.
[35] J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-time, in: Proceedings of IEEE Conference on Decision and Control, 1999, pp. 2655--2660.
[36] Ho, D. W. C.; Lu, G.: Robust stabilization for a class of discrete-time non-linear systems via output feedback: the unified LMI approach, International journal of control 76, 105-115 (2003) · Zbl 1026.93048 · doi:10.1080/0020717031000067367