×

Adaptive backstepping fuzzy control based on type-2 fuzzy system. (English) Zbl 1244.93084

Summary: A novel indirect adaptive backstepping control approach based on type-2 fuzzy system is developed for a class of nonlinear systems. This approach adopts type-2 fuzzy system instead of type-1 fuzzy system to approximate the unknown functions. With type-reduction, the type-2 fuzzy system is replaced by the average of two type-1 fuzzy systems. Ultimately, the adaptive laws, by means of backstepping design technique, will be developed to adjust the parameters to attenuate the approximation error and external disturbance. According to stability theorem, it is proved that the proposed Type-2 Adaptive Backstepping Fuzzy Control (T2ABFC) approach can guarantee global stability of closed-loop system and ensure all the signals bounded. Compared with existing Type-1 Adaptive Backstepping Fuzzy Control (T1ABFC), as the advantages of handling numerical and linguistic uncertainties, T2ABFC has the potential to produce better performances in many respects, such as stability and resistance to disturbances. Finally, a biological simulation example is provided to illustrate the feasibility of control scheme proposed in this paper.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. Kanellakopoulos, P. V. Kokotović, and R. Marino, “An extended direct scheme for robust adaptive nonlinear control,” Automatica, vol. 27, no. 2, pp. 247-255, 1991. · Zbl 0729.93046 · doi:10.1016/0005-1098(91)90075-D
[2] S. S. Sastry and A. Isidori, “Adaptive control of linearizable systems,” IEEE Transactions on Automatic Control, vol. 34, no. 11, pp. 1123-1131, 1989. · Zbl 0693.93046 · doi:10.1109/9.40741
[3] I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241-1253, 1991. · Zbl 0768.93044 · doi:10.1109/9.100933
[4] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic,, Nonlinear and Adaptive Control Design, John Wiley & Sons, New York, NY, USA, 1995.
[5] R. A. Freeman and P. V. Kokotović, Robust Nonlinear Control Design, Birkhäuser, Boston, Mass, USA, 1996. · Zbl 0787.93024 · doi:10.1007/978-0-8176-4759-9
[6] W.-Y. Wang, M.-L. Chan, T.-T. Lee, and C.-H. Liu, “Adaptive fuzzy control for strict-feedback canonical nonlinear systems with H tracking performance,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 30, no. 6, pp. 878-885, 2000. · doi:10.1109/3477.891149
[7] W.-Y. Wang, M.-L. Chan, T.-T. Lee, and C.-H. Liu, “Recursive back-stepping design of an adaptive fuzzy controller for strict output feedback nonlinear systems,” Asian Journal of Control, vol. 4, no. 3, pp. 255-264, 2002.
[8] S. S. Zhou, G. Feng, and C. B. Feng, “Robust control for a class of uncertain nonlinear systems: adaptive fuzzy approach based on backstepping,” Fuzzy Sets and Systems, vol. 151, no. 1, pp. 1-20, 2005. · Zbl 1142.93378 · doi:10.1016/j.fss.2004.05.008
[9] B. Chen and X. P. Liu, “Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 6, pp. 832-847, 2005. · Zbl 05452509 · doi:10.1109/TFUZZ.2005.859322
[10] M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 447-451, 1996. · Zbl 0846.93060 · doi:10.1109/9.486648
[11] W. Chen and Y. P. Tian, “Neural network approximation for periodically disturbed functions and applications to control design,” Neurocomputing, vol. 72, no. 16-18, pp. 3891-3900, 2009. · Zbl 05721179 · doi:10.1016/j.neucom.2009.05.005
[12] S. S. Ge and J. Wang, “Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems,” IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1409-1419, 2002. · doi:10.1109/TNN.2002.804306
[13] C. Wang, D. J. Hill, S. S. Ge, and G. Chen, “An ISS-modular approach for adaptive neural control of pure-feedback systems,” Automatica, vol. 42, no. 50, pp. 723-731, 2006. · Zbl 1137.93367 · doi:10.1016/j.automatica.2006.01.004
[14] D. W. Ho, J. Li, and Y. Niu, “Adaptive neural control for a class of nonlinearly parametric time-delay systems,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 625-635, 2005. · doi:10.1109/TNN.2005.844907
[15] C.-F. Hsu, C.-M. Lin, and T.-T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1175-1183, 2006. · doi:10.1109/TNN.2006.878122
[16] M. Wang, B. Chen, and S.-L. Dai, “Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems,” Fuzzy Sets and Systems, vol. 158, no. 24, pp. 2655-2670, 2007. · Zbl 1133.93350 · doi:10.1016/j.fss.2007.06.001
[17] M. Wang, B. Chen, X. P. Liu, and P. Shi, “Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems,” Fuzzy Sets and Systems, vol. 159, no. 8, pp. 949-967, 2008. · Zbl 1170.93349 · doi:10.1016/j.fss.2007.12.022
[18] W. Chen and Z. Zhang, “Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign,” Fuzzy Sets and Systems, vol. 161, no. 6, pp. 821-836, 2010. · Zbl 1217.93148 · doi:10.1016/j.fss.2009.10.026
[19] S. Salehi and M. Shahrokhi, “Adaptive fuzzy backstepping approach for temperature control of continuous stirred tank reactors,” Fuzzy Sets and Systems, vol. 160, no. 12, pp. 1804-1818, 2009. · Zbl 1175.93133 · doi:10.1016/j.fss.2008.09.017
[20] S. Tong, Y. Li, and P. Shi, “Fuzzy adaptive backstepping robust control for SISO nonlinear system with dynamic uncertainties,” Information Sciences, vol. 179, no. 9, pp. 1319-1332, 2009. · Zbl 1156.93357 · doi:10.1016/j.ins.2009.01.002
[21] T. Shaocheng, L. Changying, and L. Yongming, “Fuzzy adaptive observer backstepping control for MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 160, no. 19, pp. 2755-2775, 2009. · Zbl 1176.93049 · doi:10.1016/j.fss.2009.03.008
[22] J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 117-127, 2002. · doi:10.1109/91.995115
[23] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 535-550, 2000. · doi:10.1109/91.873577
[24] N. Karnik, J. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 6, pp. 643-658, 1999. · Zbl 1060.62554 · doi:10.1016/S0020-0255(99)00067-5
[25] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, Upper-Saddle River, NJ, USA, 2001. · Zbl 0986.68146
[26] T. C. Lin, H. L. Liu, and M. J. Kuo, “Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems,” Engineering Applications of Artificial Intelligence, vol. 22, no. 3, pp. 420-430, 2009. · doi:10.1016/j.engappai.2008.10.024
[27] J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20-29, 2007. · doi:10.1109/MCI.2007.380672
[28] D. Wu and W. W. Tan, “A simplified type-2 fuzzy logic controller for real-time control,” ISA Transactions, vol. 45, no. 4, pp. 503-516, 2006. · doi:10.1016/S0019-0578(07)60228-6
[29] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-I,” Information Sciences, vol. 8, pp. 199-249, 1975. · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5
[30] H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 524-539, 2004. · Zbl 05452565 · doi:10.1109/TFUZZ.2004.832538
[31] P. Melin and O. Castillo, “A new method for adaptive control of non-linear plants using Type-2 fuzzy logic and neural networks,” International Journal of General Systems, vol. 33, no. 2-3, pp. 289-304, 2004. · Zbl 1048.93504 · doi:10.1080/03081070310001633608
[32] O. Castillo, N. Cázarez, D. Rico, and L. T. Aguilar, “Intelligent control of dynamic systems using type-2 fuzzy logic and stability issues,” International Mathematical Forum, vol. 1, no. 28, pp. 1371-1382, 2006. · Zbl 1121.93035
[33] O. Castillo, N. Cazarez, and P. Melin, “Design of stable type-2 fuzzy logic controllers based on a fuzzy lyapunov approach,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2331-2336, Vancouver, Canada, July 2006. · doi:10.1109/FUZZY.2006.1682024
[34] O. Castillo, L. Aguilar, N. Cázarez, and S. Cárdenas, “Systematic design of a stable type-2 fuzzy logic controller,” Applied Soft Computing Journal, vol. 8, no. 3, pp. 1274-1279, 2008. · Zbl 05391689 · doi:10.1016/j.asoc.2007.02.021
[35] H. Hagras, “Type-2 FLCs: a new generation of fuzzy controllers,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, 2007. · doi:10.1109/MCI.2007.357192
[36] R. Sepúlveda, O. Castillo, P. Melin, A. Rodríguez-Díaz, and O. Montiel, “Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic,” Information Sciences, vol. 177, no. 10, pp. 2023-2048, 2007. · Zbl 05154770 · doi:10.1016/j.ins.2006.10.004
[37] R. Sepúlveda, O. Castillo, P. Melin, and O. Montiel, “An efficient computational method to implement type-2 fuzzy logic in control applications,” Advances in Soft Computing, vol. 41, pp. 45-52, 2007. · Zbl 1155.68074 · doi:10.1007/978-3-540-72432-2_6
[38] P.-Z. Lin, C.-M. Lin, C.-F. Hsu, and T.-T. Lee, “Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters,” IEE Proceedings-Electric Power Applications, vol. 152, no. 6, pp. 1482-1488, 2005. · doi:10.1049/ip-epa:20045232
[39] M.-Y. Hsiao, T. H. S. Li, J.-Z. Lee, C.-H. Chao, and S.-H. Tsai, “Design of interval type-2 fuzzy sliding-mode controller,” Information Sciences, vol. 178, no. 6, pp. 1696-1716, 2008. · Zbl 1139.93019 · doi:10.1016/j.ins.2007.10.019
[40] T.-C. Lin, “Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 12, pp. 4084-4099, 2010. · Zbl 1222.93132 · doi:10.1016/j.cnsns.2010.01.036
[41] K. Chafaa, L. Saïdi, M. Ghanaï, and K. Benmahammed, “Indirect adaptive interval type-2 fuzzy control for nonlinear systems,” International Journal of Modelling, Identification and Control, vol. 2, no. 2, pp. 106-119, 2007. · doi:10.1504/IJMIC.2007.014623
[42] T. C. Lin, M. J. Kuo, and C. H. Hsu, “Robust adaptive tracking control of multivariable nonlinear systems based on interval type-2 fuzzy approach,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 3, pp. 941-961, 2010.
[43] F. J. Lin and P. H. Chou, “Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network,” IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 178-193, 2009. · doi:10.1109/TIE.2008.927225
[44] E. A. Jammeh, M. Fleury, C. Wagner, H. Hagras, and M. Ghanbari, “Interval type-2 fuzzy logic congestion control for video streaming across IP networks,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1123-1142, 2009. · doi:10.1109/TFUZZ.2009.2023325
[45] R. Martínez, O. Castillo, and L. T. Aguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms,” Information Sciences, vol. 179, no. 13, pp. 2158-2174, 2009. · Zbl 1167.93385 · doi:10.1016/j.ins.2008.12.028
[46] Q. Liang and J. M. Mendel, “Designing interval type-2 fuzzy logic systems using an SVD-QR method: rule reduction,” International Journal of Intelligent Systems, vol. 15, no. 10, pp. 939-957, 2000. · Zbl 0969.68532 · doi:10.1002/1098-111X(200010)15:10<939::AID-INT3>3.0.CO;2-G
[47] J. M. Mendel, H. Hagras, and R. I. John, “Standard background material about interval type-2 fuzzy logic systems that can be used by all authors,” http://www.ieee-cis.org/_files/standards.t2.win.pdf.
[48] J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 808-821, 2006.
[49] J. M. Mendel and H. Wu, “New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule,” Information Sciences, vol. 177, no. 2, pp. 360-377, 2007. · Zbl 1111.68134 · doi:10.1016/j.ins.2006.03.003
[50] H. Wu and J. M. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 5, pp. 622-639, 2002. · doi:10.1109/TFUZZ.2002.803496
[51] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, no. 1-4, pp. 195-220, 2001. · Zbl 0982.03030 · doi:10.1016/S0020-0255(01)00069-X
[52] N. N. Karnik and J. M. Mendel, “Introduction to type-2 fuzzy logic systems,” IEEE World Congress on Computational Intelligence, pp. 915-920, 1998. · doi:10.1109/FUZZY.1998.686240
[53] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice Hall, Englewood Cliffs, NJ, USA, 1994.
[54] J. Chattopadhyay and N. Bairagi, “Pelicans at risk in Salton sea-an eco-epidemiological model,” Ecological Modelling, vol. 136, no. 2-3, pp. 103-112, 2001. · doi:10.1016/S0304-3800(00)00350-1
[55] W. Liu, H. Hethcote, and S. A. Levin, “Dynamical behavior of epidemiological models with nonlinear incidence rates,” Journal of Mathematical Biology, vol. 25, no. 4, pp. 359-380, 1987. · Zbl 0621.92014 · doi:10.1007/BF00277162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.