zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A matrix method for determining eigenvalues and stability of singular neutral delay-differential systems. (English) Zbl 1244.93123
Summary: The eigenvalues and the stability of a singular neutral differential system with single delay are considered. Firstly, by applying the matrix pencil and the linear operator methods, new algebraic criteria for the imaginary axis eigenvalue are derived. Second, practical checkable criteria for the asymptotic stability are introduced.

93D05Lyapunov and other classical stabilities of control systems
Full Text: DOI
[1] J. K. Hale, E. F. Infante, and F. S. P. Tsen, “Stability in linear delay equations,” Journal of Mathematical Analysis and Applications, vol. 105, no. 2, pp. 533-555, 1985. · Zbl 0569.34061 · doi:10.1016/0022-247X(85)90068-X
[2] E. Jarlebring and M. E. Hochstenbach, “Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations,” Linear Algebra and its Applications, vol. 431, no. 3-4, pp. 369-380, 2009. · Zbl 0569.34061 · doi:10.1016/0022-247X(85)90068-X
[3] S. L. Campbell and V. H. Linh, “Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions,” Applied Mathematics and Computation, vol. 208, no. 2, pp. 397-415, 2009. · Zbl 1170.65063 · doi:10.1016/j.laa.2009.02.008
[4] Z. Gao, “PD observer parametrization design for descriptor systems,” Journal of the Franklin Institute, vol. 342, no. 5, pp. 551-564, 2005. · Zbl 1169.65079 · doi:10.1016/j.amc.2008.12.008
[5] Z. Gao and S. X. Ding, “Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems,” Automatica, vol. 43, no. 5, pp. 912-920, 2007. · Zbl 1141.93317 · doi:10.1016/j.jfranklin.2005.03.001
[6] Z. Gao, T. Breikin, and H. Wang, “Reliable observer-based control against sensor failures for systems with time delays in both state and input,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 38, no. 5, pp. 1018-1029, 2008. · doi:10.1109/TSMCA.2008.923050
[7] T. E. Simos, “Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems,” Applied Mathematics Letters, vol. 22, no. 10, pp. 1616-1621, 2009. · Zbl 1117.93019 · doi:10.1016/j.automatica.2006.11.018
[8] S. Stavroyiannis and T. E. Simos, “Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs,” Applied Numerical Mathematics, vol. 59, no. 10, pp. 2467-2474, 2009. · Zbl 1171.65449 · doi:10.1016/j.aml.2009.04.008
[9] T. E. Simos, “Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation,” Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1331-1352, 2010. · Zbl 1192.65111 · doi:10.1007/s10440-009-9513-6
[10] W. Zhu and L. R. Petzold, “Asymptotic stability of linear delay differential-algebraic equations and numerical methods,” Applied Numerical Mathematics, vol. 24, no. 2-3, pp. 247-264, 1997. · Zbl 1192.65111 · doi:10.1007/s10440-009-9513-6
[11] J. Louisell, “A matrix method for determining the imaginary axis eigenvalues of a delay system,” Institute of Electrical and Electronics Engineers, vol. 46, no. 12, pp. 2008-2012, 2001. · Zbl 0879.65060 · doi:10.1016/S0168-9274(97)00024-X
[12] W. Jiang, The Degenerate Differential Systems with Delay, Anhui University, Hefei, China, 1998. · Zbl 0938.34068
[13] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, “Vector spaces of linearizations for matrix polynomials,” SIAM Journal on Matrix Analysis and Applications, vol. 28, no. 4, pp. 971-1004, 2006. · Zbl 1007.34078 · doi:10.1109/9.975510
[14] W. Michiels and T. Vyhlídal, “An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type,” Automatica, vol. 41, no. 6, pp. 991-998, 2005. · Zbl 1132.65027 · doi:10.1137/050628350
[15] E. Jarlebring, “On critical delays for linear neutral delay systems,” in Proceedings of the European Control Conference (ECC ’07), Kos, Greece, 2007. · Zbl 1138.93026
[16] L. Li and Y. Yuan, “Dynamics in three cells with multiple time delays,” Nonlinear Analysis. Real World Applications, vol. 9, no. 3, pp. 725-746, 2008. · Zbl 1091.93026 · doi:10.1016/j.automatica.2004.11.032