zbMATH — the first resource for mathematics

A generalized construction of mirror manifolds. (English) Zbl 1245.14039
Summary: We generalize the known method for explicit construction of mirror pairs of (2,2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories ae realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.

14J33 Mirror symmetry (algebro-geometric aspects)
32G81 Applications of deformations of analytic structures to the sciences
32J17 Compact complex \(3\)-folds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
Full Text: DOI arXiv
[1] Dixon, L., (), 67
[2] Candelas, P.; Horowitz, G.; Strominger, A.; Witten, E., Nucl. phys., B258, 46, (1985)
[3] Gepner, D.; Gepner, D., String theory on Calabi-Yau manifolds: the three generations case, Phys. lett., Princeton university report, B199, 380, (December 1987), unpublished
[4] Greene, B.R.; Vafa, C.; Warner, N.P.; Latorre, J.I.; Lütken, C.A.; Gates, S.J.; Hübsch, T.; Gates, S.J.; Hübsch, T.; Greene, B.R., Nucl. phys., Phys. lett., Phys. lett., Nucl. phys., Commun. math. phys., 130, 335, (1990)
[5] Cecotti, S.; Girardello, L.; Pasquinucci, A.; Cecotti, S.; Girardello, L.; Pasquinucci, A.; Cecotti, S.; Cecotti, S., Nucl. phys., Int. J. mod. phys., Int. J. mod. phys., Nucl. phys., B355, 755, (1991)
[6] Greene, B.R.; Plesser, M.R., Nucl. phys., B338, 15, (1990)
[7] Gepner, D.; Qiu, Z., Nucl. phys., B285, 423, (1987)
[8] Gepner, D., Nucl. phys., B296, 757, (1988)
[9] Lynker, M.; Schimmrigk, R.; Schimmrigk, R., Mirror symmetry in string theory and fractional transformations, (), B249, 237, (1990), to appear in · Zbl 0962.14029
[10] B.R. Greene and M.R. Plesser, Cornell and Yale University preprints CLNS 91-1109, YCTP-P32-91
[11] Berglund, P.; Greene, B.; Hübsch, T., Mod. phys. lett., A7, 1855, (1992)
[12] Griffiths, P.; Harris, J., Principles of algebraic geometry, (1978), Wiley New York · Zbl 0408.14001
[13] Lerche, W.; Vafa, C.; Warner, N., Nucl. phys., B324, 427, (1989)
[14] Vafa, C., Mod. phys. lett., A4, 1615, (1989)
[15] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N., ()
[16] Candelas, P.; Lynker, M.; Schimmrigk, R., Nucl. phys., B341, 383, (1970)
[17] Aspinwall, P.S.; Lütken, C.A.; Ross, G.G., Phys. lett., B241, 373, (1990)
[18] Schimmrigk, R., Phys. lett., B193, 175, (1987)
[19] Hübsch, T.; Hübsch, T., Mod. phys. lett., Class. quant. grav., 8, L31, (1991)
[20] Candelas, P.; Green, P.S.; Hübsch, T., Nucl. phys., B330, 49, (1990)
[21] P. Berglund and T. Hübsch, in preparation
[22] Intrilligator, K.; Vafa, C., Nucl. phys., B339, 95, (1990)
[23] Roan, S.-S., Int. J. math., 2, 439, (1991)
[24] Vafa, C., Mod. phys. lett., A4, 1169, (1989)
[25] Roan, S.-S., Int. J. math., 1, 211, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.