zbMATH — the first resource for mathematics

A note on element centralizers in finite Coxeter groups. (English) Zbl 1245.20045
The main result that the authors obtain is the following theorem: Let \(W\) be a finite Coxeter group and let \(w\in W\). Let \(V\) be the smallest parabolic subgroup of \(W\) that contains \(w\). Then the following hold.
(i) The centralizer \(C_V(w)=C_W(w)\cap V\) is a normal subgroup of the centralizer \(C_W(w)\) with quotient \(C_W(w)/C_V(w)\) isomorphic to the normalizer quotient \(N_W(V)/V\).
(ii) The centralizer \(C_W(w)\) splits over \(C_V(w)\) with complement isomorphic to \(N_W(V)/V\) unless \(w\) lies in a non-compliant conjugacy class of elements of \(W\).
The authors also provide a short proof of a theorem of Solomon, and they discuss its relation to MacMahon’s master theorem.

20F55 Reflection and Coxeter groups (group-theoretic aspects)
20E07 Subgroup theorems; subgroup growth
20E45 Conjugacy classes for groups
Full Text: DOI
[1] DOI: 10.1007/s002220050312 · Zbl 0926.20024 · doi:10.1007/s002220050312
[2] DOI: 10.1007/BF01190329 · Zbl 0847.20006 · doi:10.1007/BF01190329
[3] DOI: 10.1112/jlms/s2-21.1.62 · Zbl 0427.20040 · doi:10.1112/jlms/s2-21.1.62
[4] DOI: 10.1016/0024-3795(85)90279-4 · Zbl 0563.15006 · doi:10.1016/0024-3795(85)90279-4
[5] Pfei\currencyer Götz, GAP. Bayreuth. Math. Schr. 47 pp 165– (1994)
[6] DOI: 10.1017/S1446788700009381 · Zbl 1078.20042 · doi:10.1017/S1446788700009381
[7] DOI: 10.1017/S0004972700005554 · Zbl 0531.20017 · doi:10.1017/S0004972700005554
[8] DOI: 10.1016/0021-8693(66)90007-X · Zbl 0151.02003 · doi:10.1016/0021-8693(66)90007-X
[9] DOI: 10.1016/0021-8693(68)90022-7 · Zbl 0186.04503 · doi:10.1016/0021-8693(68)90022-7
[10] DOI: 10.1016/0021-8693(76)90182-4 · Zbl 0355.20007 · doi:10.1016/0021-8693(76)90182-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.