zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. (English) Zbl 1245.33020
Summary: The classical Mittag-Leffler functions, involving one- and two-parameter, play an important role in the study of fractional-order differential (and integral) equations. The so-called generalized Mittag-Leffler function, a function with three-parameter which generalizes the classical ones, appear in the fractional telegraph equation. Here we introduce some integral transforms associated with this generalized Mittag-Leffler function. As particular cases some recent results are recovered.

33E12Mittag-Leffler functions and generalizations
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761--808 (2008) · Zbl 1232.92037 · doi:10.1007/s00285-009-0251-1
[2] Langlands, T.A.M.: Solution of a modified fractional diffusion equation. Physica A 367, 136--144 (2006) · doi:10.1016/j.physa.2005.12.012
[3] Zhang, H., Liu, F.: The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions. Numer. Math. J. Chinese Univ. (English Ser.) 16, 181--192 (2007) · Zbl 1174.35328
[4] Duan, J.-s., Xu, M.-y.: The problem for fractional diffusion-wave equations on finite interval and laplace transform (in Chinese). Appl. Math. J. Chin. Univ. Ser. A 19, 165--171 (2004) · Zbl 1061.35187
[5] Yu, R., Zhang, H.: New function of Mittag-Leffler type and its application in the fractional diffusion-wave equation. Chaos, Solitons Fractals 30, 946--955 (2006) · Zbl 1142.35479 · doi:10.1016/j.chaos.2005.08.151
[6] Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Frac. Calc. Appl. Anal. 4, 153--192 (2001) · Zbl 1054.35156
[7] Mainardi, F., Pagnini, G., Saxena, R.K.: Fox H-function in fractional diffusion. J. Comput. Appl. Math. 178, 321--331 (2005) · Zbl 1061.33012 · doi:10.1016/j.cam.2004.08.006
[8] Mathai, A.M., Saxena, R.K., Haubold, H.J.: A certain class of Laplace transforms with applications to reaction and reaction--diffusion equations. Astrophys. Space Sci. 305, 283--288 (2006) · Zbl 1105.35301 · doi:10.1007/s10509-006-9188-7
[9] Mittag-Leffler, G.M.: Sur la Nouvelle Fonction E {$\alpha$} . C. R. Acad. Sci. Paris 137, 554--558 (1903)
[10] Humbert, P., Agarwal, R.P.: Sur la Fonction de Mittag-Leffler e Quelques-unes de Ses Généralisations. Bull. Sci. Math. 77, 180--185 (1953) · Zbl 0052.06402
[11] Prabhakar, T.R.: a singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7--15 (1971) · Zbl 0221.45003
[12] Figueiredo Camargo, R., Chiacchio, A.O., Capelas de Oliveira, E.: Differentiation to fractional orders and the fractional telegraph equation. J. Math. Phys. 49, 033505 (2008) · Zbl 1153.81330 · doi:10.1063/1.2890375
[13] Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Function of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982) · Zbl 0506.33007
[14] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[15] Metzler, R., Klafter, J.: The random walk’s guides to anomalous diffusion: a fractional kinetic equation. Phys. Rep. 339, 1--77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[16] Soubhia, A.L., Figueiredo Camargo, R., Vaz Jr., J., Capelas de Oliveira, E.: Theorems for series in three-parameter Mittag-Leffler functions. Frac. Cal. Appl. Anal. 13, 9--20 (2010) · Zbl 1197.26008
[17] Saxena, R.K., Pagnini, G.: Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: the accelerating case. Physica A 390, 602--613 (2011) · doi:10.1016/j.physa.2010.10.012
[18] Capelas de Oliveira, E., Mainardi, F., Vaz Jr., J.: Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Special Topics 193, 161--171 (2011) · doi:10.1140/epjst/e2011-01388-0
[19] Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Frac. Calc. Appl. Anal. 8, 7--38 (2005) · Zbl 1126.60070
[20] Romão Martins, E., Capelas de Oliveira, E.: Differential Equations and the Stäckel Systems (in Portuguese), vol. 4. IMECC-UNICAMP, Campinas (2006)
[21] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980) · Zbl 0521.33001
[22] Capelas de Oliveira, E., Rodrigues Jr., W.A.: Analytic Functions with Applications (in Portuguese). Livraria da Física, São Paulo (2005)
[23] Chen, W., Holm, S.: Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law. arXiv.org/abs/math-ph/0303040 (2003)
[24] Inizan, P.: Homogeneous fractional embeddings. J. Math. Phys. 49, 082901 (2008) · Zbl 1152.81485 · doi:10.1063/1.2963497
[25] Figueiredo Camargo, R., Charnet, R., Capelas de Oliveira, E.: On some fractional Green’s functions. J. Math. Phys. 50, 043514 (2009) · Zbl 1215.35015 · doi:10.1063/1.3119484
[26] Capelas de Oliveira, E.: Fractional Green function and diffusion-wave equation (2011, submitted) · Zbl 1215.81115
[27] Mathai, A.M., Saxena, R.K.: The H-Function with Applications in Statistics and Other Disciplines. Wiley Eastern Ltd., New Delhi (1978) · Zbl 0382.33001
[28] Mathai, A.M., Haulbold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)
[29] Mathai, A.M., Saxena, R.K., Haulbold, H.J.: The H-Function Theory and Applications. Springer, New York (2010)
[30] Kilbas, A.A., Saigo, M.: H-Transforms. Theory and Applications. Chapman and Hall/CRC, Boca Raton (2004)
[31] Silva Costa, F.: Fox’s H-function and applications (in Portuguese). Doctoral thesis, Unicamp (2011)