×

Existence of solutions for Sturm-Liouville boundary value problem of impulsive differential equations. (English) Zbl 1245.34030

Summary: This paper is concerned with the existence of solutions for Sturm-Liouville boundary value problem of a class of second-order impulsive differential equations, under different assumptions on the nonlinearity and impulsive functions. Existence criteria of single and multiple solutions are established. The main tools are variational method and critical point theorems. Some examples are also given to illustrate the main results.

MSC:

34B24 Sturm-Liouville theory
34A37 Ordinary differential equations with impulses
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences

References:

[1] M. Benchohra, J. Henderson, and S. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2 of Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation, New York, NY, USA, 2006. · Zbl 1130.34003 · doi:10.1155/9789775945501
[2] K. G. Dishlieva, “Differentiability of solutions of impulsive differential equations with respect to the impulsive perturbations,” Nonlinear Analysis, vol. 12, no. 6, pp. 3541-3551, 2011. · Zbl 1231.34018 · doi:10.1016/j.nonrwa.2011.06.014
[3] W. M. Haddad, V. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, USA, 2006. · Zbl 1114.34001
[4] R. I. Leine, U. Aeberhard, and C. Glocker, “Hamilton’s principle as variational inequality for mechanical systems with impact,” Journal of Nonlinear Science, vol. 19, no. 6, pp. 633-664, 2009. · Zbl 1183.37105 · doi:10.1007/s00332-009-9048-z
[5] X. Lin and D. Jiang, “Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations,” Journal of Mathematical Analysis and Applications, vol. 321, no. 2, pp. 501-514, 2006. · Zbl 1103.34015 · doi:10.1016/j.jmaa.2005.07.076
[6] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing, River Edge, NJ, USA, 1995. · Zbl 0837.34003 · doi:10.1142/9789812798664
[7] J. Xiao, J. J. Nieto, and Z. Luo, “Multiple positive solutions of the singular boundary value problem for second-order impulsive differential equations on the half-line,” Boundary Value Problems, vol. 2010, Article ID 281908, 13 pages, 2010. · Zbl 1194.34043 · doi:10.1155/2010/281908
[8] S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems: Theory and Applications, vol. 394 of Mathematics and its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1997. · Zbl 0880.46031
[9] L. Zhang and Z. Teng, “N-species non-autonomous Lotka-Volterra competitive systems with delays and impulsive perturbations,” Nonlinear Analysis, vol. 12, no. 6, pp. 3152-3169, 2011. · Zbl 1231.37055 · doi:10.1016/j.nonrwa.2011.05.015
[10] L. Bai and B. Dai, “An application of variational method to a class of Dirichlet boundary value problems with impulsive effects,” Journal of the Franklin Institute, vol. 348, no. 9, pp. 2607-2624, 2011. · Zbl 1266.34044 · doi:10.1016/j.jfranklin.2011.08.003
[11] J. J. Nieto, “Variational formulation of a damped Dirichlet impulsive problem,” Applied Mathematics Letters, vol. 23, no. 8, pp. 940-942, 2010. · Zbl 1197.34041 · doi:10.1016/j.aml.2010.04.015
[12] J. J. Nieto and D. O’Regan, “Variational approach to impulsive differential equations,” Nonlinear Analysis, vol. 10, no. 2, pp. 680-690, 2009. · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[13] J. Sun and H. Chen, “Variational method to the impulsive equation with Neumann boundary conditions,” Boundary Value Problems, vol. 2009, Article ID 316812, 17 pages, 2009. · Zbl 1184.34039 · doi:10.1155/2009/316812
[14] J. Sun and H. Chen, “Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems,” Nonlinear Analysis, vol. 11, no. 5, pp. 4062-4071, 2010. · Zbl 1208.34031 · doi:10.1016/j.nonrwa.2010.03.012
[15] J. Sun, H. Chen, and J. J. Nieto, “On ground state solutions for some non-autonomous Schrödinger-Poisson systems,” Journal of Differential Equations, vol. 252, pp. 3365-3380, 2012. · Zbl 1241.35057
[16] J. Sun, H. Chen, J. J. Nieto, and M. Otero-Novoa, “The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects,” Nonlinear Analysis, vol. 72, no. 12, pp. 4575-4586, 2010. · Zbl 1198.34036 · doi:10.1016/j.na.2010.02.034
[17] Y. Tian and W. Ge, “Multiple positive solutions for a second order Sturm-Liouville boundary value problem with a p-Laplacian via variational methods,” The Rocky Mountain Journal of Mathematics, vol. 39, no. 1, pp. 325-342, 2009. · Zbl 1171.34012 · doi:10.1216/RMJ-2009-39-1-325
[18] Y. Tian and W. Ge, “Applications of variational methods to boundary-value problem for impulsive differential equations,” Proceedings of the Edinburgh Mathematical Society. Series 2, vol. 51, no. 2, pp. 509-527, 2008. · Zbl 1163.34015 · doi:10.1017/S0013091506001532
[19] Y. Tian and W. Ge, “Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations,” Nonlinear Analysis, vol. 72, no. 1, pp. 277-287, 2010. · Zbl 1191.34038 · doi:10.1016/j.na.2009.06.051
[20] Y. Tian and W. Ge, “Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods,” Journal of Mathematical Analysis and Applications, vol. 387, no. 2, pp. 475-489, 2012. · Zbl 1241.34032 · doi:10.1016/j.jmaa.2011.08.042
[21] J. Xiao and J. J. Nieto, “Variational approach to some damped Dirichlet nonlinear impulsive differential equations,” Journal of the Franklin Institute, vol. 348, no. 2, pp. 369-377, 2011. · Zbl 1228.34048 · doi:10.1016/j.jfranklin.2010.12.003
[22] J. Xiao, J. J. Nieto, and Z. Luo, “Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 426-432, 2012. · Zbl 1251.34046 · doi:10.1016/j.cnsns.2011.05.015
[23] H. Zhang and Z. Li, “Variational approach to impulsive differential equations with periodic boundary conditions,” Nonlinear Analysis, vol. 11, no. 1, pp. 67-78, 2010. · Zbl 1186.34089 · doi:10.1016/j.nonrwa.2008.10.016
[24] H. Zhang and Z. Li, “Periodic and homoclinic solutions generated by impulses,” Nonlinear Analysis, vol. 12, no. 1, pp. 39-51, 2011. · Zbl 1225.34019 · doi:10.1016/j.nonrwa.2010.05.034
[25] Z. Zhang and R. Yuan, “An application of variational methods to Dirichlet boundary value problem with impulses,” Nonlinear Analysis, vol. 11, no. 1, pp. 155-162, 2010. · Zbl 1191.34039 · doi:10.1016/j.nonrwa.2008.10.044
[26] J. Zhou and Y. Li, “Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects,” Nonlinear Analysis, vol. 71, no. 7-8, pp. 2856-2865, 2009. · Zbl 1175.34035 · doi:10.1016/j.na.2009.01.140
[27] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, vol. 74 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1989. · Zbl 0676.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.