zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a nonautonomous SEIRS model in epidemiology. (English) Zbl 1245.34040
Summary: We derive some threshold conditions for permanence and extinction of diseases that can be described by a nonautonomous SEIRS epidemic model. Under the quite weak assumptions, we establish some sufficient conditions to prove the permanence and extinction of disease. Some new threshold values are determined.

MSC:
34C11Qualitative theory of solutions of ODE: growth, boundedness
34D05Asymptotic stability of ODE
92D30Epidemiology
WorldCat.org
Full Text: DOI
References:
[1] Anderson, R.M., May, R.M., 1978. Regulation and stability of host-parasite population interactions II: destabilizing process. J. Anim. Ecol. 47, 219--267. · doi:10.2307/3933
[2] Anderson, R.M., May, R.M., 1979. Population biology of infectious diseases: Part I. Nature 280, 361--367. · doi:10.1038/280361a0
[3] Anderson, R.M., May, R.M., 1992. Infectious Disease of Humans, Dynamical and Control. Oxford University Press, Oxford.
[4] Brauer, F., Castillo-Chavez, C., 2001. Mathematical Models in Population Biology and Epidemiology. Tests in Applied Mathematics. Springer, Berlin. · Zbl 1302.92001
[5] Capasso, V., 1993. Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer, Berlin. · Zbl 0798.92024
[6] Cull, P., 1981. Global stability for population models. Bull. Math. Biol. 43, 47--58. · Zbl 0451.92011
[7] Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, Chichester. · Zbl 0997.92505
[8] Dowell, S.F., 2001. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis. 7, 369--374.
[9] Earn, D.J.D., Dushoff, J., Levin, S.A., 2002. Ecology and evolution of the flu. Trends Ecol. Evol. 17, 334--340. · doi:10.1016/S0169-5347(02)02502-8
[10] Herzog, G., Redheffer, R., 2004. Nonautonomous SEIRS and Thron models for epidemiology and cell biology. Nonlinear Anal. RWA 5, 33--44. · Zbl 1067.92053 · doi:10.1016/S1468-1218(02)00075-5
[11] Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42, 599--653. · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[12] Kermark, M.D., Mckendrick, A.G., 1927. Contributions to the mathematical theory of epidemics: Part I. Proc. Roy. Soc. 115, 700--721. · Zbl 53.0517.01 · doi:10.1098/rspa.1927.0118
[13] Li, M.Y., Graef, J.R., Wang, L., Karsai, J., 1999. Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191--213. · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[14] Liu, W., Hethcote, H.W., Levin, S.A., 1987. Dynamical behavior of epidemiological models in epidemiology. J. Math. Biol. 25, 359--380. · Zbl 0621.92014 · doi:10.1007/BF00277162
[15] London, W., Yorke, J.A., 1973. Recurrent outbreaks of measles, chickenpox and mumps: I. seasonal variation in contact rates. Am. J. Epidemiol. 98, 453--468.
[16] Ma, Z., Zhou, Y., Wang, W., Jin, Z., 2004. Mathematical Modelling and Research of Epidemic Dynamical Systems. Science, Beijing.
[17] Mena-Lorca, J., Hethcote, H.W., 1992. Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol. 30, 693--716. · Zbl 0748.92012
[18] Takeuchi, Y., Cui, J., Rinko, M., Saito, Y., 2006a. Permanence of delayed population model with dispersal loss. Math. Biosci. 201, 143--156. · Zbl 1093.92059 · doi:10.1016/j.mbs.2005.12.012
[19] Takeuchi, Y., Cui, J., Rinko, M., Saito, Y., 2006b. Permanence of dispersal population model with time delays. J. Comp. Appl. Math. 192, 417--430. · Zbl 1109.34059 · doi:10.1016/j.cam.2005.06.002
[20] Teng, Z., Chen, L., 2003. Permanence and extinction of periodic predator-prey systems in a patchy environment with delay. Nonlinear Anal. RWA 4, 335--364. · Zbl 1018.92033 · doi:10.1016/S1468-1218(02)00026-3
[21] Teng, Z., Li, Z., 2000. Permanence and asymptotic behavior of the N-species nonautonomous Lotka--Volterra competitive systems. Comput. Math. Appl. 39, 107--116. · Zbl 0959.34039 · doi:10.1016/S0898-1221(00)00069-9
[22] Teng, Z., Yu, Y., 1999. The extinction in nonautonomous prey-predator Lotka--Volterra systems. Acta Math. Appl. Sin. 15, 401--408. · Zbl 1007.92031 · doi:10.1007/BF02684041
[23] Thieme, H.R., 1999. Uniform weak implies uniform strong persistence also for non-autonomous semiflows. Proc. Am. Math. Soc. 127, 2395--2403. · Zbl 0918.34053 · doi:10.1090/S0002-9939-99-05034-0
[24] Thieme, H.R., 2000. Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173--201. · Zbl 0970.37061 · doi:10.1016/S0025-5564(00)00018-3
[25] Thieme, H.R., 2003. Mathematics in Population Biology. Princeton University Press, Princeton. · Zbl 1054.92042
[26] Zhang, J., Lou, J., Ma, Z., Wu, J., 2005. A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China. Appl. Math. Comput. 162, 909--924. · Zbl 1057.92048 · doi:10.1016/j.amc.2003.12.131