×

The energy-critical defocusing NLS on \({\mathbb{T}}^{3}\). (English) Zbl 1245.35119

The authors of the paper consider the initial value problem for the nonlinear Schrödinger (NLS) \[ (i\partial_t+\triangle )u=u|u|^4, \quad u(0)=\phi , \] where \(\partial_t u\equiv \partial u /\partial t\), \(x\in\mathbb{T}^3\), \(\mathbb{T}=\mathbb{R}/(2\pi \mathbb{Z})\). It is known that suitable solutions of this problem on a time interval \(I\) satisfy mass and energy conservation, that is, \[ M(u)(t)=\int_{\mathbb{T}^3}|u(t)|^2dx, \quad E(u)(t)=(1/2)\int_{\mathbb{T}^3} |\nabla u(t)|^2dx + (1/6)\int_{\mathbb{T}^3} |u(t)|^6dx \] are constant on the interval \(I\).
The main statement concerns global well-posedness in \(H^1(\mathbb{T}^3)\) for the problem under consideration. It is shown that if \(\phi \in H^1(\mathbb{T}^3)\), then there exists a unique global solution \(u\in X^1(\mathbb {R})\) of the above stated initial value problem. In addition the mapping \(\phi \to u\) extends to a continuous mapping from \(H^1(\mathbb{T}^3)\) to \(X^1([-T,T])\) for any \(T\in [0,\infty )\), and the quantities \(M(u)\) and \(E(u)\) are conserved along the flow.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
42B37 Harmonic analysis and PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] N. Anantharaman and F. Macia, Semiclassical measures for the Schrödinger equation on the torus , preprint, [math.FA] 1005.0296v2
[2] J. Bourgain, Exponential sums and nonlinear Schrödinger equations , Geom. Funct. Anal. 3 (1993), 157-178. · Zbl 0787.35096
[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations , Geom. Funct. Anal. 3 (1993), 107-156. · Zbl 0787.35097
[4] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case , J. Amer. Math. Soc. 12 (1999), 145-171. · Zbl 0958.35126
[5] N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds , Amer. J. Math. 126 (2004), 569-605. · Zbl 1067.58027
[6] N. Burq, P. Gérard, and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces , Invent. Math. 159 (2005), 187-223. · Zbl 1092.35099
[7] N. Burq, P. Gérard, and N. Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations , Ann. Sci. École Norm. Sup. 38 (2005), 255-301. · Zbl 1116.35109
[8] T. Cazenave, Semilinear Schrödinger Equations , Courant Lect. Notes Math. 10 , Amer. Math. Soc., Providence, 2003. · Zbl 1055.35003
[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \Bbb R 3 , Ann. of Math. (2) 167 (2008), 767-865. · Zbl 1178.35345
[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation , Invent. Math. 181 (2010), 39-113. · Zbl 1197.35265
[11] P. Gérard and V. Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds , Bull. Soc. Math. France 1 38 (2010), 119-151. · Zbl 1183.35251
[12] M. Grillakis, On nonlinear Schrödinger equations , Comm. Partial Differential Equations 25 (2000), 1827-1844. · Zbl 0970.35134
[13] Z. Hani, Global well-posedness of the cubic nonlinear Schrödinger equation on compact manifolds without boundary , preprint, [math.AP] 1008.2826v2
[14] S. Herr, The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds , to appear in Amer. J. Math., preprint, [math.AP] 1101.4565v3 · Zbl 1278.58006
[15] S. Herr, D. Tataru, and N. Tzvetkov, Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in H 1 ( T 3 ), Duke Math. J. 1 59 (2011), 329-349. · Zbl 1230.35130
[16] S. Herr, D. Tataru, and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in 4 d and applications , preprint, [math.AP] 1011.0591v1 · Zbl 1293.35299
[17] A. D. Ionescu, B. Pausader, and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces , to appear in Anal. Partial Differential Equations, preprint, [math.AP] 1008.1237v2 · Zbl 1264.35215
[18] A. D. Ionescu, B. Pausader, and G. Staffilani, Global wellposedness of the energy-critical defocusing NLS on \({\mathbb{R}}\times\mathbb{T}^{3}\), preprint, [math.AP] 1101.4527v2
[19] R. Killip and M. Visan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions , to appear in Anal. Partial Differential Equations, preprint, [math.AP] 1102.1192v2
[20] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , Invent. Math. 166 (2006), 645-675. · Zbl 1115.35125
[21] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations , J. Differential Equations 175 (2001), 353-392. · Zbl 1038.35119
[22] F. Macia, High-frequency propagation for the Schrödinger equation on the torus , J. Funct. Anal. 258 (2010), 933-955. · Zbl 1180.35438
[23] E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \Bbb R 1+4 , Amer. J. Math. 129 (2007), 1-60. · Zbl 1160.35067
[24] H. Takaoka and N. Tzvetkov, On 2 Dnonlinear Schrödinger equations with data on \(\mathbb{R}\times\mathbb{T}\), J. Funct. Anal. 1 82 (2001), 427-442. · Zbl 0976.35085
[25] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis , CBMS Reg. Conf. Ser. Math. 106 , Amer. Math. Soc., Providence, 2006. · Zbl 1106.35001
[26] N. Tzvetkov and N. Visciglia, Small data scattering for the nonlinear Schrödinger equation on product spaces , preprint, [math.AP] 1011.6185v2 · Zbl 1247.35004
[27] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions , Duke Math. J. 138 (2007), 281-374. · Zbl 1131.35081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.