×

The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions. (English) Zbl 1245.35123

Summary: In this work the method of inverse spectral problem is applied to the integration of the nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35R30 Inverse problems for PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972; translated from Zh. Eksper. Teoret. Fiz. 61(1), 118–134 (1971))
[2] Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37, 823–828 (1973; translated from Zh. Eksper. Teoret. Fiz. 64(5), 1627–1639 (1973))
[3] Zakharov, V.E., Manakov, S.V.: On the complete integrability of a nonlinear Schrödinger equation. Theoret. Mat. Fiz. 19(3), 332–343 (1974) · Zbl 0293.35025
[4] Satsuma, J., Yajima, N.: Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theor. Phys., Suppl. 55, 284–306 (1974)
[5] Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.I.: Theory of Solitons: The Inverse Scattering Method. Contemporary Soviet Mathematics, Consultants Bureau, New York (1984) · Zbl 0598.35002
[6] Faddeev, L.D., Takhtadjan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)
[7] Mitropol’skii, Yu.A., Bogolyubov, N.N. Jr., Prikarpatskii, A.K., Samoilenko, V.G.: Integrable Dynamical Systems: Spectral and Differential Geometric Aspects. Naukova Dumka, Kiev (1987)
[8] Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982) · Zbl 0496.35001
[9] Its, A.R.: Inversion of hyperelliptic integrals and integration of nonlinear differential equations. Vestnik Leningrad Univ. Math. 9, 121–129 (1981; translated from Vestnik Leningrad. Univ, Ser. Mat. Mekh. Astr. vyp. 2(7), 39–46 (1976)) · Zbl 0462.35015
[10] Its, A.R., Kotljarov, V.P.: Explicit formulas for solutions of a nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukr. SSR, Ser. A 11, 965–968 (1976, in Russian) · Zbl 0341.35050
[11] Matveev, V.B., Yavor, M.I.: Solutions presque periodiques et a N-solitons de l’equation hydrodynamique nonlineaire de Kaup. Ann. Inst. Henri Poincare, Sect. A 31, 25–41 (1979) · Zbl 0435.76016
[12] Its, A.R.: Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential equations. Sov. Math., Dokl. 24, 452–456 (1981) · Zbl 0534.35028
[13] Bogolyubov, N.N. Jr., Prikarpatskii, A.K., Kurbatov, A.M., Samoilenko, V.G.: Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability. Theoret. Mat. Fiz. 65(2), 271–284 (1985)
[14] Babich, M.V., Bobenko, A.I., Matveev, V.B.: Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves. Izv. Akad. Nauk SSSR, Ser. Mat. 49(3), 511–529 (1985) · Zbl 0583.35012
[15] Belokolos, E.D., Bobenko, A.I., Matveev, V.B., Énol’skii, V.Z.: Algebraic–geometric principles of superposition of finite-zone solutions of integrable non-linear equations. Russ. Math. Surv. 41(2), 1–49 (1986) · Zbl 0612.35117
[16] Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986) · Zbl 0625.35015
[17] Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: First-order exact solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987) · Zbl 0656.35135
[18] Its, A.R., Rybin, A.V., Sall’, M.A.: Exact integration of nonlinear Schrödinger equation. Theoret. Mat. Fiz. 74(1), 29–45 (1988) · Zbl 0678.35012
[19] Bikbaev, R.F., Its, A.R.: Algebrogeometric solutions of a boundary-value problem for the nonlinear Schrödinger equation. Mat. Zametki 45(5), 3–9 (1989) · Zbl 0706.35124
[20] Alfimov, G.L., Its, A.R., Kulagin, N.E.: Modulation instability of solutions of the nonlinear Schrödinger equation. Theoret. Mat. Fiz. 84(2), 163–172 (1990) · Zbl 0718.35088
[21] Smirnov, A.O.: Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg-de Vries equation. Russian Acad. Sci. Sb. Math. 82(2), 461–470 (1995)
[22] Smirnov, A.O.: Elliptic in t solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 107(2), 568–578 (1996) · Zbl 0927.35110
[23] Mel’nikov, V.K.: Integration of the nonlinear Schrödinger equation with a self-consistent source. Commun. Math. Phys. 137, 359–381 (1991) · Zbl 0731.35090
[24] Mel’nikov, V.K.: Integration of the nonlinear Schrödinger equation with a source. Inverse Probl. 8, 133–147 (1992) · Zbl 0752.35069
[25] Zeng, Y.B., Ma, W.X., Lin, R.L.: Integration of the soliton hierarchy with self-consistent sources. J. Math. Phys. 41(8), 5453–5489 (2000) · Zbl 0968.37023
[26] Shao, Y., Zeng, Y.: The solutions of the NLS equations with self-consistent sources. J. Phys. A: Math. Gen. 38, 2441–2467 (2005) · Zbl 1112.35141
[27] Grinevich, P.G., Taimanov, I.A.: Spectral conservation laws for periodic nonlinear equations of the Melnikov type. Amer. Math. Soc. Transl. Ser. 2 224, 125–138 (2008) · Zbl 1158.35078
[28] Khasanov, A.B., Yakhshimuratov, A.B.: The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions. Theor. Math. Phys. 164(2), 1008–1015 (2010) · Zbl 1301.35134
[29] Levitan, B.M., Sargsjan, I.S.: Sturm-Liouville and Dirac Operators. Kluwer, Dordrecht (1990)
[30] Misyura, T.V.: Characterization of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator. Teor. Funktsii Funktsional. Anal. i Prilozhen. 30, 90–101 (1978, in Russian)
[31] Misyura, T.V.: Characterization of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator, II. Teor. Funktsii Funktsional. Anal. i Prilozhen. 31, 102–109 (1979, in Russian)
[32] Misyura, T.V.: Finite-zone Dirac operators. Teor. Funktsii Funktsional. Anal. i Prilozhen. 33, 107–111 (1980, in Russian) · Zbl 0464.47019
[33] Misyura, T.V.: Approximation of the periodic potential of the Dirac operator by finite-zone potentials. Teor. Funktsii Funktsional. Anal. i Prilozhen. 36, 55–65 (1981, in Russian) · Zbl 0508.34008
[34] Misyura, T.V.: An asymptotic formula for Weyl solutions of the Dirac equations. J. Math. Sci. 77(1), 2941–2954 (1995)
[35] Khasanov, A.B., Yakhshimuratov, A.B.: The analogue G.Borg’s inverse theorem for Dirac’s operator. Uzbek. Mat. Zh. 3, 40–46 (2000, in Russian) · Zbl 1165.34429
[36] Khasanov, A.B., Ibragimov, A.M.: On an inverse problem for the Dirac operator with periodic potential. Uzbek. Mat. Zh. 3–4, 48–55 (2001, in Russian)
[37] Marchenko, V.A.: Sturm-Liouville Operators and Applications. Naukova Dumka, Kiev (1977, in Russian; English transl. Birkhäuser, Basel, 1986) · Zbl 0399.34022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.