zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. (English) Zbl 1245.35142
Summary: A systematic investigation to derive Lie point symmetries to time fractional generalized Burgers as well as Korteweg-de Vries equations is presented. Using the obtained Lie point symmetries we have shown that each of them has been transformed into a nonlinear ordinary differential equation of fractional order with a new independent variable. The derivative corresponding to time fractional in the reduced equation is usually known as the Erdélyi-Kober fractional derivative.

35R11Fractional partial differential equations
35Q53KdV-like (Korteweg-de Vries) equations
35Q35PDEs in connection with fluid mechanics
Full Text: DOI
[1] Bluman, G. W.; Anco, S.: Symmetry and integration methods for differential equations, (2002) · Zbl 1013.34004
[2] Ibragimov, N. H.: CRC handbook of Lie group analysis of differential equations--symmetries, exact solutions and conservation laws, CRC handbook of Lie group analysis of differential equations--symmetries, exact solutions and conservation laws 1 (1994) · Zbl 0864.35001
[3] Lakshmanan, M.; Kaliappan, P.: Lie transformations, nonlinear evolution equations and Painlevé forms, J. math. Phys. 24, 795 (1983) · Zbl 0525.35022 · doi:10.1063/1.525752
[4] Olver, P. J.: Applications of Lie groups to differential equations, (1986) · Zbl 0588.22001
[5] Ovsiannikov, L. V.: Group analysis of differential equations, (1982) · Zbl 0485.58002
[6] P. Winternitz, Lie groups and solutions of nonlinear partial differential equations, in: Lecture Notes in Physics, CRM-1841, Canada, 1993. · Zbl 0830.35004
[7] Fokas, A. S.: Symmetries and integrability, Stud. appl. Math. 77, 253 (1987) · Zbl 0639.35075
[8] A.B. Mikhailov, A.B. Shabat, V.V. Sokolov, The symmetry approach to classification of integrable equation, in: What is Integrability?, Springer Series on Nonlinear Dynamics, Berlin, 1991, pp. 115--184. · Zbl 0741.35070
[9] Levi, D.; Winternitz, P.: Continuous symmetries of discrete equations, Phys. lett. A 152, 335-340 (1991)
[10] Maeda, S.: Canonical structure and symmetries for discrete systems, Math. japon. 25, 405-420 (1980) · Zbl 0446.70022
[11] Sahadevan, R.; Rajakumar, S.: Bilinear, trilinear forms and exact solution of certain fourth order integrable difference equations, J. math. Phys. 49, 033517 (2008) · Zbl 1153.81427 · doi:10.1063/1.2897977
[12] Hilfer, R.: Applications of fractional calculus in physics, (2000) · Zbl 0998.26002
[13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[14] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[15] Samko, S.; Kilbas, A. A.; Marichev, O.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[16] Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation, J. comput. Phys. 211, 249-261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[17] Momani, S.; Odibat, Z.: Analytical solution of a time fractional Navier--Stokes equation by Adomian decomposition method, Appl. math. Comput. 177, 488-494 (2006) · Zbl 1096.65131 · doi:10.1016/j.amc.2005.11.025
[18] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. methods appl. Mech. eng. 167, 57-68 (1998) · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[19] Momani, S.; Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. lett. A 365, 345-350 (2007) · Zbl 1203.65212 · doi:10.1016/j.physleta.2007.01.046
[20] Bagley, R.; Torvik, P.: A theoretical basis for the application of fractional calculus to visco-elasticity, J. rheol. 27, No. 3, 201-210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[21] Momani, S.; Odibat, Z.: Generalised differential transform method for linear partial differential equations of fractional order, Appl. math. Lett. 21, No. 2, 194-199 (2008) · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[22] Diethelm, K.: An algorithm for the numerical solution for differential equation of fractional order, Electron. trans. Numer. anal. 5, 1-6 (1997) · Zbl 0890.65071 · emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[23] Yuan, L.; Agrawal, O. P.: A numerical scheme for dynamic systems containing fractional derivatives, J. vib. Acoust. 124, 321-324 (2002)
[24] Gazizov, R. K.; Kasatkin, A. A.; Lukashchuk, S. Yu.: Continuous transformation groups of fractional differential equations, Vestnik, USATU 9, 125-135 (2007)
[25] Gazizov, R. K.; Kasatkin, A. A.; Lukashchuk, S. Yu.: Symmetry properties of fractional diffusion equations, Phys. scr. 136, 014016 (2009)
[26] Buckwar, E.; Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. math. Anal. appl. 227, 81-97 (1998) · Zbl 0932.58038 · doi:10.1006/jmaa.1998.6078
[27] Djordjevic, V. D.; Atanackovic, T. M.: Similarity solutions to nonlinear heat conduction and Burgers/Korteweg--devries fractional equations, J. comput. Appl. math. 212, 701-714 (2008) · Zbl 1157.35470 · doi:10.1016/j.cam.2007.12.013
[28] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[29] Oldham, K. B.; Spanier, J.: The fractional calculus, (1974) · Zbl 0292.26011
[30] Kiryakova, V.: Generalised fractional calculus and applications, Pitman res. Notes in math. 301 (1994) · Zbl 0882.26003