Galerne, B.; Gousseau, Y. The transparent dead leaves model. (English) Zbl 1245.60011 Adv. Appl. Probab. 44, No. 1, 1-20 (2012). The authors generalise the famous dead leaves model by G. Matheron by assuming that each grain (leave) has a random grey level (intensity) and combining them according to a transparency principle. Namely, when adding a new grain, the new grey values are obtained as a linear combination of former grey values and the intensity of the grain. The suggested model can be used to model natural grey-scale images.The authors explore probabilistic properties of the transparent dead leaves model, like marginal distribution and the covariance, and describe a simulation algorithm. The main result is a limit theorem showing that, when varying the transparency from opacity to the full transparency, the suggested model ranges from the classical dead leaves model to a Gaussian random field. Reviewer: Ilya S. Molchanov (Bern) Cited in 4 Documents MSC: 60D05 Geometric probability and stochastic geometry 60G60 Random fields 62M40 Random fields; image analysis Keywords:germ-grain model; dead leaves model; grey-scale image; occlusion; image modeling; texture modeling PDF BibTeX XML Cite \textit{B. Galerne} and \textit{Y. Gousseau}, Adv. Appl. Probab. 44, No. 1, 1--20 (2012; Zbl 1245.60011) Full Text: DOI OpenURL References: [1] Baddeley, A. (2007). Spatial point processes and their applications. In Stochastic Geometry (Lecture Notes Math. 1892 ), ed. W. Weil, Springer, Berlin, pp. 1-75. · Zbl 1127.62086 [2] Barral, J. and Mandelbrot, B. B. (2002). Multifractal products of cylindrical pulses. Prob. Theory Relat. Fields 124, 409-430. · Zbl 1014.60042 [3] Baryshnikov, Y. and Yukich, J. E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Prob. 15, 213-253. · Zbl 1068.60028 [4] Bickel, P. J. and Doksum, K. A. (2001). Mathematical Statistics , Vol. I, 2nd edn. Prentice Hall. · Zbl 0403.62001 [5] Bordenave, C., Gousseau, Y. and Roueff, F. (2006). The dead leaves model: a general tessellation modeling occlusion. Adv. Appl. Prob. 38, 31-46. · Zbl 1095.60004 [6] Bovier, A. and Picco, P. (1993). A law of the iterated logarithm for random geometric series. Ann. Prob. 21, 168-184. · Zbl 0770.60029 [7] Cao, F., Guichard, F. and Hornung, H. (2010). Dead leaves model for measuring texture quality on a digital camera. In Digital Photography VI (Proc. SPIE 7537 ), eds F. H. Imai, N. Sampat and F. Xiao, 8pp. [8] Chainais, P. (2007). Infinitely divisible cascades to model the statistics of natural images. IEEE Trans. Pattern Analysis Mach. Intellig. 29, 2105-2119. [9] Enderton, E., Sintorn, E., Shirley, P. and Luebke, D. (2010). Stochastic transparency. In Proc. 2010 ACM SIGGRAPH Symp. Interactive 3D Graphics and Games , ACM, New York, pp. 157-164. [10] Galerne, B., Gousseau, Y. and Morel, J.-M. (2011). Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20, 257-267. · Zbl 1372.94086 [11] Gousseau, Y. and Roueff, F. (2007). Modeling occlusion and scaling in natural images. Multiscale Model. Simul. 6, 105-134. · Zbl 1143.62057 [12] Grosjean, B. and Moisan, L. (2009). A-contrario detectability of spots in textured backgrounds. J. Math. Imaging Vision 33, 313-337. · Zbl 05537294 [13] Heinrich, L. and Schmidt, V. (1985). Normal convergence of multidimensional shot noise and rates of this convergence. Adv. Appl. Prob. 17, 709-730. · Zbl 0609.60036 [14] Jeulin, D. (1997). Dead leaves models: from space tesselation to random functions. In Proc. Internat. Symp. Advances in Theory and Applications of Random Sets , ed. D. Jeulin, World Scientific, River Edge, NJ, pp. 137-156. [15] Kendall, W. S. and Thönnes, E. (1999). Perfect simulation in stochastic geometry. Pattern Recognition 32, 1569-1586. [16] Kingman, J. F. C. (1993). Poisson Processes (Oxford Stud. Prob. 3 ). Oxford University Press. · Zbl 0771.60001 [17] Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms . Springer, Berlin. · Zbl 0990.86007 [18] Matheron, G. (1968). Schéma booléen séquentiel de partition aléatoire. Tech. Rep. 89, CMM. [19] Matheron, G. (1975). Random Sets and Integral Geometry . John Wiley, New York. · Zbl 0321.60009 [20] Michalowicz, J., Nichols, J. M., Bucholtz, F. and Olson, C. C. (2009). An Isserlis’ theorem for mixed Gaussian variables: application to the auto-bispectral density. J. Statist. Phys. 136, 89-102. · Zbl 1179.60047 [21] Penrose, M. D. (2007). Gaussian limits for random geometric measures. Electron. J. Prob. 12, 989-1035. · Zbl 1153.60015 [22] Rice, J. (1977). On generalized shot noise. Adv. Appl. Prob. 9, 553-565. · Zbl 0379.60052 [23] Richard, F. and Biermé, H. (2010). Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography. J. Math. Imaging Vision 36, 227-240. [24] Schmitt, M. (1991). Estimation of the density in a stationary Boolean model. J. Appl. Prob. 28, 702-708. · Zbl 0729.62095 [25] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry . Springer, Berlin. · Zbl 1175.60003 [26] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications , 2nd edn. John Wiley, Chichester. · Zbl 0838.60002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.