×

zbMATH — the first resource for mathematics

The complete \(1/N\) expansion of colored tensor models in arbitrary dimension. (English) Zbl 1245.81118
Summary: In this paper we generalize the results of the author [Ann. Henri Poincaré 12, No. 5, 829–847 (2011; Zbl 1218.81088)], R. Gurau and V. Rivasseau [Europhys. Lett. 95, No. 5, Article ID 50004, 5 p. (2001; doi:10.1209/0295-5075/95/50004)] and derive the full \(1/N\) expansion of colored tensor models in arbitrary dimensions. We detail the expansion for the independent identically distributed model and the topological Boulatov Ooguri model.

MSC:
81T18 Feynman diagrams
81V17 Gravitational interaction in quantum theory
83C45 Quantization of the gravitational field
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Gurau, R., The 1/N expansion of colored tensor models, Annales Henri Poincare, 12, 829, (2011) · Zbl 1218.81088
[2] Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. (2011) arXiv:1101.4182 [gr-qc] · Zbl 0483.20018
[3] David, F., A model of random surfaces with nontrivial critical behavior, Nucl. Phys. B, 257, 543, (1985)
[4] Gross, M., Tensor models and simplicial quantum gravity in > 2-D, Nucl. Phys. Proc. Suppl., 25, 144, (1992) · Zbl 0957.83511
[5] Ambjorn, J.; Durhuus, B.; Jonsson, T., Three-dimensional simplicial quantum gravity and generalized matrix mod, Mod. Phys. Lett. A, 6, 1133, (1991) · Zbl 1020.83537
[6] Sasakura, N., Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A, 6, 2613, (1991) · Zbl 1020.83542
[7] Boulatov, D.V., A model of three-dimensional lattice gravity, Mod. Phys. Lett. A, 7, 1629, (1992) · Zbl 1020.83539
[8] Ooguri, H., Topological lattice models in four-dimensions, Mod. Phys. Lett. A, 7, 2799, (1992) · Zbl 0968.57501
[9] Freidel, L., Group field theory: an overview, Int. J. Theor. Phys., 44, 1769, (2005) · Zbl 1100.83010
[10] Oriti, D.: The group field theory approach to quantum gravity: some recent results. arXiv:0912.2441 [hep-th] · Zbl 1223.83025
[11] Brezin, E.; Itzykson, C.; Parisi, G.; Zuber, J.B., Planar diagrams, Commun. Math. Phys., 59, 35, (1978) · Zbl 0997.81548
[12] ’t Hooft, G., A planar diagram theory for strong interactions, Nucl. Phys. B, 72, 461, (1974)
[13] Gross, D.J.; Miljkovic, N., A nonperturbative solution of D = 1 string theory, Phys. Lett. B, 238, 217, (1990) · Zbl 1332.81175
[14] Gross, D.J.; Klebanov, I.R., One-dimensional string theory on a circle, Nucl. Phys. B, 344, 475, (1990)
[15] Di Francesco, P.; Ginsparg, P.H.; Zinn-Justin, J., 2-D gravity and random matrices, Phys. Rept., 254, 1, (1995)
[16] Kazakov, V.A.; Migdal, A.A.; Kostov, I.K., Critical properties of randomly triangulated planar random surfaces, Phys. Lett. B, 157, 295, (1985)
[17] Boulatov, D.V.; Kazakov, V.A.; Kostov, I.K.; Migdal, A.A., Analytical and numerical study of the model of dynamically triangulated random surfaces, Nucl. Phys. B, 275, 641, (1986) · Zbl 0968.81540
[18] Kazakov, V.; Kostov, I.K.; Kutasov, D., A matrix model for the two-dimensional black hole, Nucl. Phys. B, 622, 141, (2002) · Zbl 0988.81099
[19] Freidel, L.; Louapre, D., Ponzano-Regge model revisited. I: gauge fixing, observables and interacting spinning particles, Class. Quant. Grav., 21, 5685, (2004) · Zbl 1060.83013
[20] Baratin, A.; Oriti, D., Group field theory with non-commutative metric variables, Phys. Rev. Lett., 105, 221302, (2010)
[21] Engle, J.; Pereira, R.; Rovelli, C., Flipped spinfoam vertex and loop gravity, Nucl. Phys. B, 798, 251, (2008) · Zbl 1234.83009
[22] Livine, E.R.; Speziale, S., A new spinfoam vertex for quantum gravity, Phys. Rev. D, 76, 084028, (2007)
[23] Freidel, L.; Krasnov, K., A new spinfoam model for 4d gravity, Class. Quant. Grav., 25, 125018, (2008) · Zbl 1144.83007
[24] Geloun, J.B.; Gurau, R.; Rivasseau, V., EPRL/FK group field theory, Europhys. Lett., 92, 60008, (2010)
[25] Oriti, D.; Tlas, T., Encoding simplicial quantum geometry in group field theories, Class. Quant. Grav., 27, 135018, (2010) · Zbl 1195.83046
[26] Grosse, H.; Wulkenhaar, R., Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base, Commun. Math. Phys., 256, 305, (2005) · Zbl 1075.82005
[27] Gurau, R.; Magnen, J.; Rivasseau, V.; Vignes-Tourneret, F., Renormalization of non-commutative phi**4(4) field theory in x space, Commun. Math. Phys., 267, 515, (2006) · Zbl 1113.81101
[28] Disertori, M.; Gurau, R.; Magnen, J.; Rivasseau, V., Vanishing of beta function of non commutative phi(4)**4 theory to all orders, Phys. Lett. B, 649, 95, (2007) · Zbl 1248.81253
[29] Geloun, J.B.; Gurau, R.; Rivasseau, V., Vanishing beta function for Grosse-Wulkenhaar model in a magnetic field, Phys. Lett. B, 671, 284, (2009)
[30] Conrady, F.; Freidel, L., On the semiclassical limit of 4d spin foam models, Phys. Rev. D, 78, 104023, (2008)
[31] Barrett, J.W.; Dowdall, R.J.; Fairbairn, W.J.; Hellmann, F.; Pereira, R., Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Class. Quant. Grav, 27, 165009, (2010) · Zbl 1197.83049
[32] Freidel, L., Oriti, D., Ryan, J.: A group field theory for 3d quantum gravity coupled to a scalar field. arXiv:gr-qc/0506067 · Zbl 1218.81088
[33] Oriti, D.; Ryan, J., Group field theory formulation of 3d quantum gravity coupled to matter fields, Class. Quant. Grav, 23, 6543, (2006) · Zbl 1133.83373
[34] Dowdall, R.J.: Wilson loops, geometric operators and fermions in 3d group field theory. arXiv:0911.2391 [gr-qc]
[35] Fairbairn, W.J.; Livine, E.R., 3d spinfoam quantum gravity: matter as a phase of the group field theory, Class. Quant. Grav, 24, 5277, (2007) · Zbl 1126.83303
[36] Di Mare, A.; Oriti, D., Emergent matter from 3d generalised group field theories, Class. Quant. Grav, 27, 145006, (2010) · Zbl 1195.83077
[37] Baratin, A., Girelli, F., Oriti, D.: Diffeomorphisms in group field theories. arXiv:1101.0590 [hep-th]
[38] Ashtekar, A.; Campiglia, M.; Henderson, A., Loop quantum cosmology and spin foams, Phys. Lett. B, 681, 347, (2009)
[39] Ashtekar, A.; Campiglia, M.; Henderson, A., Casting loop quantum cosmology in the spin foam paradigm, Class. Quant. Grav., 27, 135020, (2010) · Zbl 1195.83091
[40] Freidel, L.; Gurau, R.; Oriti, D., Group field theory renormalization - the 3d case: power counting of divergences, Phys. Rev. D, 80, 044007, (2009)
[41] Magnen, J.; Noui, K.; Rivasseau, V.; Smerlak, M., Scaling behaviour of three-dimensional group field theory, Class. Quant. Grav., 26, 185012, (2009) · Zbl 1176.83066
[42] Geloun, J.B.; Magnen, J.; Rivasseau, V., Bosonic colored group field theory, Eur. Phys. J. C, 70, 1119, (2010)
[43] Geloun, J.B.; Krajewski, T.; Magnen, J.; Rivasseau, V., Linearized group field theory and power counting theorems, Class. Quant. Grav., 27, 155012, (2010) · Zbl 1195.81093
[44] Geloun, J.B., Bonzom, V.: Radiative corrections in the Boulatov-Ooguri tensor model: the 2-point function. arXiv:1101.4294[hep-th] · Zbl 1236.81164
[45] Alexandrov, S., Roche, P.: Critical overview of loops and foams. arXiv:1009.4475 [gr-qc]
[46] Gurau, R., Colored group field theory, Commun. Math. Phys, 304, 69, (2011) · Zbl 1214.81170
[47] Gurau, R., Topological graph polynomials in colored group field theory, Annales Henri Poincaré, 11, 565, (2010) · Zbl 1208.81153
[48] Gurau, R., Lost in translation: topological singularities in group field theory, Class. Quant. Grav, 27, 235023, (2010) · Zbl 1205.83022
[49] Ambjorn, J.; Kristjansen, C.F.; Makeenko, Yu.M., Higher genus correlators for the complex matrix model, Mod. Phys. Lett. A, 7, 3187, (1992) · Zbl 1021.81779
[50] Ambjorn, J., Chekhov, L., Kristjansen, C.F., Makeenko, Yu.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B 404, 127 (1993). Erratum-ibid. B 449, 681 (1995). arXiv:hep-th/9302014 · Zbl 1043.81636
[51] Gurau, R., A diagrammatic equation for oriented planar graphs, Nucl. Phys. B, 839, 580, (2010) · Zbl 1206.81076
[52] Gurau, R.; Rivasseau, V., Parametric representation of noncommutative field theory, Commun. Math. Phys, 272, 811, (2007) · Zbl 1156.81465
[53] Stillwell, J., The word problem and the isomorphism problem for groups, Bull. Am. Math. Soc., 6, 33-56, (1982) · Zbl 0483.20018
[54] Caravelli, F.: A simple proof of orientability in the colored Boulatov model. arXiv:1012.4087 [math-ph] · Zbl 1020.83542
[55] Ferri, M., Gagliardi, C.: Crystallisation moves. Pac. J. Math. 100(1) (1982) · Zbl 0517.57003
[56] Lins, S.: Gems, computers and attractors for 3-manifolds, (Series on Knots and Everything, Vol 5). ISBN:9810219075/ISBN-13:9789810219079 · Zbl 0868.57002
[57] Bonzom, V., Smerlak, M.: Bubble divergences from twisted cohomology. arXiv:1008.1476 [math-ph] · Zbl 1257.83011
[58] De Pietri, R.; Freidel, L.; Krasnov, K.; Rovelli, C., Barrett-crane model from a boulatov-ooguri field theory over a homogeneous space, Nucl. Phys. B, 574, 785, (2000) · Zbl 0992.83017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.