zbMATH — the first resource for mathematics

Decay of a linear pendulum in a free-molecular gas and in a special Lorentz gas. (English) Zbl 1245.82066
Authors’ abstract: A circular disk without thickness is placed in a gas, and an external force, obeying Hooke’s law, is acting perpendicularly on that disk. If the disk is displaced perpendicularly from its equilibrium position and released, then it starts an oscillatory or non-oscillatory unsteady motion, which decays as time progresses because of the drag exerted by the gas molecules. This unsteady motion, i.e., the decay of this linear pendulum, is investigated numerically under the diffuse reflection condition on the surface of the disk with special interest in the manner of its decay for two kinds of gases: one is a collisionless gas (or Knudsen gas) and the other is a special Lorentz gas interacting with the background. It is shown that the decay of the displacement of the disk is slow and is in proportion to an inverse power of time for the collisionless gas. The result complements the existing mathematical study of a similar problem [S. Caprino, G. Cavallaro and C. Marchioro, Math. Models Methods Appl. Sci. 17, No. 9, 1369–1403 (2007; Zbl 1216.70008)] in the case of non-oscillatory decay. It is also shown that the manner of the decay changes significantly for the special Lorentz gas.

82D05 Statistical mechanical studies of gases
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
Full Text: DOI
[1] Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Comm. Math. Phys. 264, 167–189 (2006) · Zbl 1113.82059 · doi:10.1007/s00220-006-1542-7
[2] Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007) · Zbl 1216.70008 · doi:10.1142/S0218202507002315
[3] Cavallaro, G.: On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. Appl. (7) 27, 123–145 (2007) · Zbl 1134.76055
[4] Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. Math. Model. Numer. Anal. 42, 263–275 (2008) · Zbl 1133.76046 · doi:10.1051/m2an:2008007
[5] Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309 (2009) · doi:10.1103/PhysRevE.80.016309
[6] Tsuji, T., Aoki, K.: Decay of an oscillating plate in a free-molecular gas. In: Levin, D.A., Wysong, I.J., Garcia, A.L. (eds.) Rarefied Gas Dynamics. pp. 140–145. AIP, Melville (2011)
[7] Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birk√§user, Boston (2007); Supplementary Notes and Errata: Kyoto University Research Information Repository. http://hdl.handle.net/2433/66098 · Zbl 1144.76001
[8] Cavallaro, G., Marchioro, C.: On the approach to equilibrium for a pendulum immersed in a Stokes fluid. Math. Models Methods Appl. Sci. 20, 1999–2019 (2010) · Zbl 1402.76039 · doi:10.1142/S0218202510004854
[9] Cavallaro, G., Marchioro, C., Tsuji, T.: Approach to equilibrium of a rotating sphere in a Stokes flow. Ann. Univ. Ferrara 57, 211–228 (2011) · Zbl 1252.76026 · doi:10.1007/s11565-011-0127-3
[10] Gallavotti, G.: Statistical Mechanics: A Short Treatise. Springer, Berlin (1999) · Zbl 0932.82002
[11] Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141, 264–317 (2010) · Zbl 1210.82053 · doi:10.1007/s10955-010-0046-1
[12] Boltzmann, L.: Lectures on Gas Theory. Dover, New York (1995)
[13] Takata, S.: Invitation to the kinetic theory. Nagare (J. Jpn. Soc. Fluid Mech.) 27, 387–396 (2008) (in Japanese)
[14] Gruber, Ch., Piasecki, J.: Stationary motion of the adiabatic piston. Physica A 268, 412–423 (1999) · doi:10.1016/S0378-4371(99)00095-3
[15] Chernov, N., Lebowitz, J.L., Sinai, Ya.: Scaling dynamics of a massive piston in a cube filled with ideal gas: exact results. J. Stat. Phys. 109, 529–548 (2002) · Zbl 1211.76093 · doi:10.1023/A:1020402312727
[16] Lebowitz, J.L., Piasecki, J., Sinai, Ya.: In: Hard Ball Systems and the Lorentz Gas. Encyclopedia of Mathematical Sciences, vol. 101, pp. 217–227. Springer, New York (2000) · Zbl 1127.82308
[17] Kestemont, E., Van den Broeck, C., Mansour, M.M.: The ”adiabatic” piston: and yet it moves. Europhys. Lett. 49, 143–149 (2000) · doi:10.1209/epl/i2000-00129-8
[18] Chernov, N., Lebowitz, J.L.: Dynamics of a massive piston in an ideal gas: oscillatory motion and approach to equilibrium. J. Stat. Phys. 109, 507–527 (2002) · Zbl 1101.82319 · doi:10.1023/A:1020450228657
[19] Caglioti, E., Chernov, N., Lebowitz, J.L.: Stability of solutions of hydrodynamic equations describing the scaling limit of a massive piston in an ideal gas. Nonlinearity 17, 897–923 (2004) · Zbl 1053.82028 · doi:10.1088/0951-7715/17/3/009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.