×

zbMATH — the first resource for mathematics

Robust formation control of multiple wheeled mobile robots. (English) Zbl 1245.93085
Summary: This paper considers formation control of a group of wheeled mobile robots with uncertainty. Decentralized cooperative robust controllers are proposed in two steps. In the first step, cooperative control laws are proposed for multiple kinematic systems with the aid of results from graph theory such that a group of robots comes into a desired formation. In the second step, cooperative robust control laws for multiple uncertain dynamic systems are proposed with the aid of backstepping techniques and the passivity properties of the dynamic systems such that multiple robots comes into a desired formation. Since communication delay is inevitable in cooperative control, its effect on the proposed controllers is analyzed. Simulation results show the effectiveness of the proposed controllers.

MSC:
93C85 Automated systems (robots, etc.) in control theory
70E60 Robot dynamics and control of rigid bodies
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17, 905–908 (2001)
[2] Fierro, R., Das, A., Kumar, V., Ostrowski, J.: Hybrid control of formations of robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 157–162 (2001)
[3] Mesbahi, M., Hadaegh, F.Y.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. AIAA J. Guid. Control Dyn. 24, 369–377 (2001)
[4] Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20, 443–455 (2004)
[5] Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)
[6] Parker, L.E.: Alliance: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14, 220–240 (1998)
[7] Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)
[8] Kang, W., Xi, N., Sparks, A.: Formation control of autonomous agents in 3d workspace. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1755–1760 (2000)
[9] Lewis, M., Tan, K.-H.: High precision formation control of mobile robots using virtual structures. Auton. Robots 4, 387–403 (1997)
[10] Yamaguchi, H.: A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robot. Auton. Syst. 43, 257–282 (2003) · Zbl 01963192
[11] Lawton, J., Beard, R.W., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)
[12] Feddema, J.T., Lewis, C., Schoenwald, D.A.: Decentralized control of cooperative robotic vehicles: theory and application. IEEE Trans. Robot. Autom. 18(5), 852–864 (2002)
[13] Justh, E.W., Krishnaprasad, P.S.: Equilibrium and steering laws for planar formations. Syst. Control. Lett. 52, 25–38 (2004) · Zbl 1157.93406
[14] Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Automat. Contr. 52, 916–922 (2007) · Zbl 1366.93401
[15] Mastellone, S., Stipanovic, D.M., Graunke, C., Intlekofer, K., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Rob. Res. 27, 107–126 (2008) · Zbl 05744786
[16] Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(2), 383–399 (2010)
[17] Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic systems. In: Proc. of Conference of Decision and Control (2007) · Zbl 1166.93302
[18] Dong, W., Farrell, J.A.: Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Automat. Contr. 53(7), 1434–1448 (2008) · Zbl 1367.93226
[19] Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45, 706–710 (2009) · Zbl 1166.93302
[20] Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automat. Contr. 37, 1746–1757 (1992) · Zbl 0778.93084
[21] Dong, W., Xu, W.L.: Adaptive tracking control of uncertain nonholonomic dynamic system. IEEE Trans. Automat. Contr. 46(3), 450–454 (2001) · Zbl 1056.93554
[22] Lewis, F., Abdallah, C., Dawson, D.: Control of Robot Manipulators. Macmillan, New York, (1993)
[23] Chung, F.R.K.: Spectral graph theory. In: Regional Conf. Series in Mathematics of Amer. Mathematical Soc., vol. 92 (1997) · Zbl 0867.05046
[24] Merris, R.: A survey of graph laplacians. Linear and Multilinear Algebra 39, 19–31 (1995) · Zbl 0832.05081
[25] Merris, R.: Laplacian graph eigenvectors. Linear Algebra Appl. 278, 221–236 (1998) · Zbl 0932.05057
[26] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1987)
[27] Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49, 101–115 (2004) · Zbl 1365.93301
[28] Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, N.J. (1991) · Zbl 0753.93036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.