×

Optimality conditions for stochastic boundary control problems governed by semilinear parabolic equations. (English) Zbl 1245.93146

Summary: We study the boundary control problems for stochastic parabolic equations with Neumann boundary conditions. Imposing super-parabolic conditions, we establish the existence and uniqueness of the solution of state and adjoint equations with non-homogeneous boundary conditions by the Galerkin approximations method. We also find that, in this case, the adjoint equation (BSPDE) has two boundary conditions (one is non-homogeneous, the other is homogeneous). Using these results, we derive necessary optimality conditions for the control systems under convex state constraints by the convex perturbation method.

MSC:

93E20 Optimal stochastic control
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
49K45 Optimality conditions for problems involving randomness
35K99 Parabolic equations and parabolic systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Casas, E., Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations, SIAM J. Control Optim., 35, 1297-1327 (1997) · Zbl 0893.49017
[2] Casas, E.; Raymond, J. P.; Zidani, H., Pontryagin’s principle for local solutions of control problems with mixed control-state constraints, SIAM J. Control Optim., 39, 1182-1203 (2000) · Zbl 0984.49011
[3] Kushner, H. J., Necessary conditions for continuous parameter stochstic optimization problems, SIAM J. Control Optim., 10, 550-565 (1973) · Zbl 0242.93063
[4] Haussmann, U. G., General necessary conditions for optimal control of stochastic systems, Math. Program. Stud., 6, 30-48 (1976) · Zbl 0369.93048
[5] Haussmann, U. G., (A Stochstic Maximum Principle for Optimal Control of Diffusions. A Stochstic Maximum Principle for Optimal Control of Diffusions, Pitman Research Notes in Math Series, vol. 151 (1986), John Wiley & Sons: John Wiley & Sons New York) · Zbl 0616.93076
[6] Arkin, V. I.; Saksonov, M. T., Necessary optimality conditions for stochastic differential equations, Sov. Math. Dokl., 20, 1-5 (1979) · Zbl 0414.49017
[7] Bensoussan, A., Lecture on stochastic control Part I, Lecture Notes in Math., 972, 1-39 (1983)
[8] Bismut, J. M., An introductory approach to duality in optimal stochastic control, SIAM Rev., 20, 61-78 (1978) · Zbl 0378.93049
[9] Cadenillas, A.; Karatzas, I., The stochastic maximum principle for linear convex optimal control with random coefficients, SIAM J. Control Optim., 33, 590-624 (1995) · Zbl 0826.93069
[10] Elliott, R. J., The optimal control of diffusions, Appl. Math. Optim., 22, 229-240 (1990) · Zbl 0718.49013
[11] Elliott, R. J.; Kohlmann, M., The second order minimum principle and adjoint process, Stoch. Stoch. Rep., 46, 15-39 (1994) · Zbl 0824.60051
[12] Peng, S., A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28, 966-979 (1990) · Zbl 0712.93067
[13] Yong, J.; Zhou, X., (Stochastic Control, Hamilton Systems and HJB Equations. Stochastic Control, Hamilton Systems and HJB Equations, Appl. Math., vol. 43 (1999), Springer-Verlag: Springer-Verlag New York)
[14] Bahlali, S., Necessary and sufficient optimality conditions for relaxed and strict control problems, SIAM J. Control Optim., 47, 2078-2095 (2008) · Zbl 1167.49024
[15] Bensoussan, A., Stochastic maximum principle for distributed parameter system, J. Franklin Inst., 315, 387-406 (1983) · Zbl 0519.93042
[16] Hu, Y.; Peng, S., Maximum principle for semilinear stochastic evolution controls systems, Stochastics, 33, 159-180 (1990) · Zbl 0722.93080
[17] Zhou, X. Y., On the necessary conditions of optimal controls for stochastic partial differential equations, SIAM J. Control Optim., 31, 1462-1478 (1993) · Zbl 0795.93104
[18] Hu, Y.; Peng, S., Adapted solution of a backward semilinear stochastic evolution equation, Stoch. Anal. Appl., 9, 445-459 (1991) · Zbl 0736.60051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.