Arnold, Barry C. Majorization: here, there and everywhere. (English) Zbl 1246.01010 Stat. Sci. 22, No. 3, 407-413 (2007). Summary: The appearance of A. W. Marshall and I. Olkin’s book “Inequalities: theory of majorization and its applications” [Mathematics in Science and Engineering 143; New York etc.: Academic Press (1979; Zbl 0437.26007)] on inequalities with special emphasis on majorization generated a surge of interest in potential applications of majorization and Schur convexity in a broad spectrum of fields. After 25 years this continues to be the case. The present article presents a sampling of the diverse areas in which majorization has been found to be useful in the past 25 years. Cited in 13 Documents MSC: 01A60 History of mathematics in the 20th century 62-03 History of statistics Keywords:inequalities; Schur convex; covering; waiting time; paired comparisons; phase type; catchability; disease transmission; apportionment; statistical mechanics; random graph Citations:Zbl 0437.26007 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Aldous, D. and Shepp, L. (1987). The least variable phase type distribution is Erlang. Comm. Statist. Stochastic Models 3 467–473. · Zbl 0635.60086 · doi:10.1080/15326348708807067 [2] Arnold, B. C. (1987). Majorization and the Lorenz Order : A Brief Introduction . Springer, Berlin. · Zbl 0649.62041 [3] Balinski, M. L. and Young, H. P. (2001). Fair Representation Meeting the Idea of One Man , One Vote , 2nd ed. Brookings Institute Press, Washington, DC. [4] Dalal, S. R. and Fortini, P. (1982). An inequality comparing sums and maxima with application to Behrens–Fisher type problem. Ann. Statist. 10 297–301. · Zbl 0481.62017 · doi:10.1214/aos/1176345712 [5] Eisenberg, B. (1991). The effect of variable infectivity on the risk of HIV infection. Statist. Medicine 9 131–139. [6] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1929). Some simple inequalities satisfied by convex functions. Messenger of Mathematics 58 145–152. · JFM 55.0740.04 [7] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1934). Inequalities . Cambridge Univ. Press. · Zbl 0010.10703 [8] Huffer, F. W. and Shepp, L. A. (1987). On the probability of covering the circle by random arcs. J. Appl. Probab. 24 422–429. JSTOR: · Zbl 0623.60018 · doi:10.2307/3214266 [9] Joe, H. (1988). Majorization, entropy and paired comparisons. Ann. Statist. 16 915–925. · Zbl 0721.62067 · doi:10.1214/aos/1176350843 [10] Marshall, A. W. and Olkin, I. (1979). Inequalities : Theory of Majorization and Its Applications . Academic Press, New York. · Zbl 0437.26007 [11] Marshall, A. W., Olkin, I. and Pukelsheim, F. (2002). A majorization comparison of apportionment methods in proportional representation. Soc. Choice Welf. 19 885–900. · Zbl 1072.91533 · doi:10.1007/s003550200164 [12] Nayak, T. K. and Christman, M. C. (1992). Effect of unequal catchability on estimates of the number of classes in a population. Scand. J. Statist. 19 281–287. · Zbl 0754.62086 [13] Neuts, M. F. (1975). Computational uses of the method of phases in the theory of queues. Comput. Math. Appl. 1 151–166. · Zbl 0338.60064 · doi:10.1016/0898-1221(75)90015-2 [14] O’Cinneide, C. A. (1991). Phase-type distributions and majorization. Ann. Appl. Probab. 1 219–227. · Zbl 0729.60069 · doi:10.1214/aoap/1177005935 [15] Ross, S. (1981). A random graph. J. Appl. Probab. 18 309–315. JSTOR: · Zbl 0448.60010 · doi:10.2307/3213194 [16] Ross, S. (1999). The mean waiting time for a pattern. Probab. Engrg. Inform. Sci. 13 1–9. · Zbl 0985.60081 · doi:10.1017/S0269964899131012 [17] Stevens, W. L. (1939). Solution to a geometrical problem in probability. Ann. Eugenics 9 315–320. · Zbl 0023.05603 · doi:10.1111/j.1469-1809.1939.tb02216.x [18] Tong, Y. L. (1997). Some majorization orderings of heterogeneity in a class of epidemics. J. Appl. Probab. 34 84–93. JSTOR: · Zbl 0876.60012 · doi:10.2307/3215177 [19] Zylka, C. (1985). A note on the attainability of states by equalizing processes. Theor. Chim. Acta 68 363–377. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.