×

Some upper bounds for the atom-bond connectivity index of graphs. (English) Zbl 1246.05091

Summary: The recently introduced atom-bond connectivity (ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes. B. Furtula, A. Graovac and D. Vukičević [Discrete Appl. Math. 157, No. 13, 2828–2835 (2009; Zbl 1209.05252)] determined the extremal ABC values for chemical trees, and showed that the star tree \(S_{n}\) has the maximal ABC index among all trees.
In this work, we show that among all n-vertex graphs with vertex connectivity \(k\), the graph \(K_{k} \vee (K_{1}\cup K_{n - k - 1})\) is the unique graph with maximum ABC index. Furthermore, we determine the maximum ABC index of a connected graph with n vertices and matching number \(\beta \) and characterize the unique extremal graph as \(K_\beta \vee \overline {K_{n-\beta}}\).

MSC:

05C40 Connectivity
05C05 Trees
05C90 Applications of graph theory
05C35 Extremal problems in graph theory

Citations:

Zbl 1209.05252
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Behtoei, A.; Jannesari, M.; Taeri, B., Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity, Appl. Math. Lett., 22, 1571-1576 (2009) · Zbl 1171.05350
[2] Das, K. C.; Gutman, I.; Furtula, B., Survey on Geometric-Arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 65, 595-644 (2011) · Zbl 1265.05004
[3] Liu, B.; Gutman, I., On general Randic indices, MATCH Commun. Math. Comput. Chem., 58, 147-154 (2007) · Zbl 1193.92089
[4] Liu, B.; Gutman, I., On a conjecture on Randic indices, MATCH Commun. Math. Comput. Chem., 62, 143-154 (2009) · Zbl 1247.92066
[5] Liu, B.; You, Z., A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem., 65, 581-593 (2011) · Zbl 1265.05123
[6] Zhou, B.; Trinajstic, N., Further results on atom-bond connectivity index of trees, Chem. Phys. Lett., 455, 120-123 (2008)
[7] Zhang, M.; Liu, B., On a conjecture about the Randic index and diameter, MATCH Commun. Math. Comput. Chem., 64, 433-442 (2010) · Zbl 1265.05131
[8] Randić, M., On characterization of molecular branching, J. Am. Chem. Soc., 97, 6609-6615 (1975)
[9] Estrada, E., Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463, 422-425 (2008)
[10] Estrada, E.; Torres, L.; Rodríguez, L.; Gutman, I., An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. A, 37, 849-855 (1998)
[11] Lovász, L.; Plummer, M. D., Matching theory [M], Ann. Discrete Math. (1986) · Zbl 0618.05001
[12] Bondy, J. A.; Murty, U. S.R., Graph Theory with Applications (1976), American Elsevier: American Elsevier New York · Zbl 1134.05001
[13] Furtula, B.; Graovac, A.; Vukicevic, D., Atom-bond connectivity index of trees, Discrete Appl. Math., 157, 2828-2835 (2009) · Zbl 1209.05252
[14] Xing, R.; Zhou, B.; Du, Z., Further results on atom-bond connectivity index of trees, MATCH Commun. Math. Comput. Chem., 158, 1536-1545 (2010) · Zbl 1216.05161
[15] Chen, J.; Guo, X., Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem., 65, 713-722 (2011) · Zbl 1265.05569
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.