×

Congruences for generalized \(q\)-Bernoulli polynomials. (English) Zbl 1246.11045

Summary: We give some further properties of the \(p\)-adic \(q\)-\(L\)-function of two variables, which has recently been constructed by T. Kim [Russ. J. Math. Phys. 12, No. 2, 186–196 (2005; Zbl 1190.11049)] and the first author [\(p\)-adic \(q\)-\(L\)-function of two variables, Ph.D. thesis, Department of Mathematics, Akdeniz University, Antalya, Turkey (2006)]. One of the applications of these properties yields general classes of congruences for generalized \(q\)-Bernoulli polynomials, which are \(q\)-extensions of the classes for generalized Bernoulli numbers and polynomials given by G. J. Fox [Enseign. Math., II. Sér. 46, No. 3-4, 225–278 (2000; Zbl 0999.11073)], H. S. Gunaratne [CMS Conf. Proc. 15, 209–214 (1995; Zbl 0843.11012)], and P. T. Young [J. Number Theory 78, No. 2, 204–227 (1999; Zbl 0939.11014), Acta Arith. 99, No. 3, 277–288 (2001; Zbl 0982.11008)].

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11S40 Zeta functions and \(L\)-functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[7] doi:10.1016/S0012-365X(01)00293-X · Zbl 1007.11073
[9] doi:10.1215/S0012-7094-79-04621-0 · Zbl 0409.12028
[10] doi:10.1016/0022-314X(76)90106-2 · Zbl 0329.12017
[11] doi:10.1016/S0022-314X(02)00031-8 · Zbl 1067.11076
[12] doi:10.2307/1997840 · Zbl 0382.12008
[14] doi:10.1007/BF01406470 · Zbl 0441.12003
[15] doi:10.1215/S0012-7094-48-01588-9 · Zbl 0032.00304
[18] doi:10.2206/kyushujm.48.73 · Zbl 0817.11054
[21] doi:10.1016/0022-314X(82)90068-3 · Zbl 0501.12020
[25] doi:10.1080/10652460410001672960 · Zbl 1135.11340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.