Ashyralyev, Allaberen; Sharifov, Yagub A. Existence and uniqueness of solutions for the system of nonlinear fractional differential equations with nonlocal and integral boundary conditions. (English) Zbl 1246.34004 Abstr. Appl. Anal. 2012, Article ID 594802, 14 p. (2012). Summary: The nonlocal and integral boundary value problems for the system of nonlinear fractional differential equations involving the Caputo fractional derivative are investigated. Theorems on existence and uniqueness of a solution are established under some sufficient conditions on nonlinear terms. A simple example of application of the main result of this paper is presented. Cited in 15 Documents MSC: 34A08 Fractional ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] R. I. Bagley, “A theoretical basis for the application of fractional calculus to viscoelasticity,” Journal of Rheology, vol. 27, no. 3, pp. 201-210, 1983. · Zbl 0515.76012 · doi:10.1122/1.549724 [2] G. Sorrentinos, “Fractional derivative linear models for describing the viscoelastic dynamic behavior of polymeric beams,” in Proceedings of the IMAS Conference and Exposition on Structural Dynamics, St. Louis, Mo, USA, 2006. [3] G. Sorrentinos, “Analytic modeling and experimental identification of viscoelastic mechanical systems,” in Advances in Fractional Calculus, Springer, 2007. [4] F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, NY, USA, 1997. · Zbl 1235.74308 · doi:10.1006/jsvi.1997.1213 [5] R. Magin, “Fractional calculus in bioengineering,” Critical Reviews in Biomedical Engineering, vol. 32, no. 1, pp. 1-104, 2004. [6] M. Ortigueira, “Special issue on fractional signal processing and applications,” Signal Processing, vol. 83, no. 11, pp. 2285-2480, 2003. [7] B. M. Vinagre, I. Podlubny, A. Hernández, and V. Feliu, “Some approximations of fractional order operators used in control theory and applications,” Fractional Calculus & Applied Analysis, vol. 3, no. 3, pp. 231-248, 2000. · Zbl 1111.93302 [8] K. B. Oldham, “Fractional differential equations in electrochemistry,” Advances in Engineering Software, vol. 41, no. 1, pp. 9-12, 2010. · Zbl 1177.78041 · doi:10.1016/j.advengsoft.2008.12.012 [9] R. Metzler and J. Klafter, “Boundary value problems for fractional diffusion equations,” Physica A, vol. 278, no. 1-2, pp. 107-125, 2000. · Zbl 0984.82032 · doi:10.1016/S0378-4371(99)00503-8 [10] M. De la Sen, “Positivity and stability of the solutions of Caputo fractional linear time-invariant systems of any order with internal point delays,” Abstract and Applied Analysis, vol. 2011, Article ID 161246, 25 pages, 2011. · Zbl 1217.34124 · doi:10.1155/2011/161246 [11] E. M. Rabei, T. S. Alhalholy, and A. Rousan, “Potentials of arbitrary forces with fractional derivatives,” International Journal of Modern Physics A, vol. 19, no. 17-18, pp. 3083-3092, 2004. · Zbl 1080.70516 · doi:10.1142/S0217751X04019408 [12] O. P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,” Journal of Mathematical Analysis and Applications, vol. 272, no. 1, pp. 368-379, 2002. · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4 [13] S. Tu, K. Nishimoto, S. Jaw, and S. D. Lin, “Applications of fractional calculus to ordinary and partial differential equations of the second order,” Hiroshima Mathematical Journal, vol. 23, no. 1, pp. 63-77, 1993. · Zbl 0797.35026 [14] K. Dichelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, Germany, 2004. [15] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999. · Zbl 0924.34008 [16] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, London, UK, 1993. · Zbl 0818.26003 [17] J. L. Lavoie, T. J. Osler, and R. Tremblay, “Fractional derivatives and special functions,” SIAM Review, vol. 18, no. 2, pp. 240-268, 1976. · Zbl 0324.44002 · doi:10.1137/1018042 [18] R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,” Acta Applicandae Mathematicae, vol. 109, no. 3, pp. 973-1033, 2010. · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6 [19] M. Benchohra, S. Hamani, and S. K. Ntouyas, “Boundary value problems for differential equations with fractional order,” Surveys in Mathematics and its Applications, vol. 3, pp. 1-12, 2008. · Zbl 1157.26301 [20] R. W. Ibrahim and S. Momani, “On the existence and uniqueness of solutions of a class of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 1-10, 2007. · Zbl 1123.34302 · doi:10.1016/j.jmaa.2006.12.036 [21] V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis, vol. 69, no. 8, pp. 2677-2682, 2008. · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042 [22] S. Xinwei and L. Landong, “Existence of solution for boundary value problem of nonlinear fractional differential equation,” Applied Mathematics A, vol. 22, no. 3, pp. 291-298, 2007. · Zbl 1150.34005 · doi:10.1007/s11766-007-0306-2 [23] S. Zhang, “Existence of solution for a boundary value problem of fractional order,” Acta Mathematica Scientia B, vol. 26, no. 2, pp. 220-228, 2006. · Zbl 1106.34010 · doi:10.1016/S0252-9602(06)60044-1 [24] R. P. Agarwal, M. Benchohra, and S. Hamani, “Boundary value problems for fractional differential equations,” Georgian Mathematical Journal, vol. 16, no. 3, pp. 401-411, 2009. · Zbl 1179.26011 · doi:10.1007/s10440-008-9356-6 [25] A. Ashyralyev and B. Hicdurmaz, “A note on the fractional Schrödinger differential equations,” Kybernetes, vol. 40, no. 5-6, pp. 736-750, 2011. · doi:10.1108/03684921111142287 [26] A. Ashyralyev, F. Dal, and Z. Pınar, “A note on the fractional hyperbolic differential and difference equations,” Applied Mathematics and Computation, vol. 217, no. 9, pp. 4654-4664, 2011. · Zbl 1221.65212 · doi:10.1016/j.amc.2010.11.017 [27] A. Ashyralyev and Z. Cakir, “On the numerical solution of fractional parabolic partial differential equations,” AIP Conference Proceeding, vol. 1389, pp. 617-620, 2011. [28] A. Ashyralyev, “Well-posedness of the Basset problem in spaces of smooth functions,” Applied Mathematics Letters, vol. 24, no. 7, pp. 1176-1180, 2011. · Zbl 1217.34006 · doi:10.1016/j.aml.2011.02.002 [29] C. Yuan, “Two positive solutions for (n-1,1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 930-942, 2012. · Zbl 1248.35225 · doi:10.1016/j.cnsns.2011.06.008 [30] M. De la Sen, R. P. Agarwal, A. Ibeas, and S. Alonso-Quesada, “On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination,” Advances in Difference Equations, vol. 2011, Article ID 748608, 32 pages, 2011. · Zbl 1219.34066 · doi:10.1155/2011/748608 [31] M. De la Sen, “About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory,” Fixed Point Theory and Applications, vol. 2011, Article ID 867932, 19 pages, 2011. · Zbl 1219.34102 · doi:10.1155/2011/867932 [32] C. Yuan, “Multiple positive solutions for semipositone (n,p)-type boundary value problems of nonlinear fractional differential equations,” Analysis and Applications, vol. 9, no. 1, pp. 97-112, 2011. · Zbl 1216.34005 · doi:10.1142/S0219530511001753 [33] C. Yuan, “Multiple positive solutions for (n-1,1)-type semipositone conjugate boundary value problems for coupled systems of nonlinear fractional differential equations,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 12, pp. 1-12, 2011. · Zbl 1261.34014 [34] R. P. Agarwal, M. Belmekki, and M. Benchohra, “A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative,” Advances in Difference Equations, vol. 2009, Article ID 981728, 47 pages, 2009. · Zbl 1182.34103 · doi:10.1155/2009/981728 [35] R. P. Agarwal, B. de Andrade, and C. Cuevas, “On type of periodicity and ergodicity to a class of fractional order differential equations,” Advances in Difference Equations, vol. 2010, Article ID 179750, 25 pages, 2010. · Zbl 1194.34007 · doi:10.1155/2010/179750 [36] R. P. Agarwal, B. de Andrade, and C. Cuevas, “Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations,” Nonlinear Analysis, vol. 11, no. 5, pp. 3532-3554, 2010. · Zbl 1248.34004 · doi:10.1016/j.nonrwa.2010.01.002 [37] A. S. Berdyshev, A. Cabada, and E. T. Karimov, “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator,” Nonlinear Analysis, vol. 75, no. 6, pp. 3268-3273, 2011. · Zbl 1242.35180 [38] B. Ahmad and J. J. Nieto, “Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions,” Boundary Value Problems, vol. 2011, Article ID 708576, 11 pages, 2009. · Zbl 1167.45003 · doi:10.1155/2009/708576 [39] A. Bouncherif, “Second order boundary value problems with integral boundary conditions,” Nonlinear Analysis, vol. 70, no. 1, pp. 368-379, 2009. · Zbl 1169.34310 · doi:10.1016/j.na.2007.12.007 [40] R. A. Khan, “Existence and approximation of solutions of nonlinear problems with integral boundary conditions,” Dynamic Systems and Applications, vol. 14, no. 2, pp. 281-296, 2005. · Zbl 1090.34012 [41] R. A. Khan, M. U. Rehman, and J. Henderson, “Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions,” Fractional Differential Equations, vol. 1, no. 1, pp. 29-43, 2011. [42] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003 [43] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA, 2003. · Zbl 1025.47002 [44] A. Ashyralyev, “A note on fractional derivatives and fractional powers of operators,” Journal of Mathematical Analysis and Applications, vol. 357, no. 1, pp. 232-236, 2009. · Zbl 1175.26004 · doi:10.1016/j.jmaa.2009.04.012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.