zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and asymptotic properties of solutions of nonlinear multivalued differential inclusions with nonlocal conditions. (English) Zbl 1246.34059
The authors study the differential inclusion with multivalued perturbation and nonlocal initial condition $$ u^{\prime }(t) \in Au(t)+F(t,u(t)), \ {u(0) = g(u)}$$ where $A:D(A)\subseteq X\rightarrow X$ is a nonlinear $m$-dissipative operator which generates a contraction semigroup $S(t)$, $X$ is a real Banach space and $F$ is a set-valued function which is weakly upper semicontinuous in its second variable. $S(t)$ is not assumed to be compact and $F$ is not assumed to be strongly upper semicontinuous. In Theorem 3.1, existence of integral solutions is proven under the additional assumptions that $X^{\ast }$ is uniformly convex, $S(t)$ is equicontinuous, $F$ is measurable in its first variable and satisfies a growth condition and a measure of noncompactness requirement and $g$ is continuous, compact and satisfies a growth condition. Note that $X$ is not assumed to be separable. The proof is an application of a fixed point theorem in [{\it D. Bothe}, “Multivalued perturbations of $m$-accretive differential inclusions”, Isr. J. Math. 108, 109--138 (1998; Zbl 0922.47048)]. In Theorem 4.1, existence of integral solutions is proven under the additional assumptions that $X$ is separable, $X^{\ast }$ is uniformly convex, $F$ is measurable in its first variable, satisfies a Lipschitz condition and a growth condition and $g$ is Lipschitz continuous. Note that $S(t)$ is not assumed to be equicontinuous. The proof is an application of a fixed point theorem found in [{\it K. Deimling}, Multivalued Differential Equations. De Gruyter Studies in Nonlinear Analysis and Applications. 1. Berlin: Walter de Gruyter (1992; Zbl 0760.34002)]. A result on asymptotic behavior as $t\rightarrow \infty $ is proven in Theorem 5.1 in which a given solution is proven to be almost nonexpansive. The implications of this property are given for each of several sets of assumptions on the Banach space $X$. Finally, a partial differential equations example is given in which Theorem 3.1 is applied.

34G25Evolution inclusions
47H06Accretive operators, dissipative operators, etc. (nonlinear)
47H08Measures of noncompactness and condensing mappings, $K$-set contractions, etc.
34D05Asymptotic stability of ODE
47N20Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Aizicovici, S.; Gao, Y.: Functional differential equations with nonlocal initial conditions, J. appl. Math. stoch. Anal. 10, No. 2, 145-156 (1997) · Zbl 0883.34065 · doi:10.1155/S104895339700018X
[2] Aizicovici, S.; Lee, H.: Existence results for nonautonomous evolution equations with nonlocal initial conditions, Commun. appl. Anal. 11, 285-297 (2007) · Zbl 1147.34043
[3] Aizicovici, S.; Mckibben, M.: Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear anal. 39, 649-668 (2000) · Zbl 0954.34055 · doi:10.1016/S0362-546X(98)00227-2
[4] Aizicovici, S.; Staicu, V.: Multivalued evolution equations with nonlocal initial conditions in Banach spaces, Nodea nonlinear differential equations appl. 14, 361-376 (2007) · Zbl 1145.35076 · doi:10.1007/s00030-007-5049-5
[5] Aubin, J. P.; Frankowska, H.: Set-valued analysis, (1990) · Zbl 0713.49021
[6] Bader, R.: The periodic problem for semilinear differential inclusions in Banach spaces, Comment. math. Univ. carolin. 39, 671-684 (1998) · Zbl 1060.34508 · emis:journals/CMUC/cmuc9804/cmuc9804.htm
[7] Banas, J.; Goebel, K.: Measure of noncompactness in Banach spaces, Lect. notes pure appl. Math. 60 (1980) · Zbl 0441.47056
[8] Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces, (1976) · Zbl 0328.47035
[9] Benchohra, M.; Ntouyas, S.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces, J. math. Anal. appl. 258, 573-590 (2001) · Zbl 0982.45008 · doi:10.1006/jmaa.2000.7394
[10] Benchochra, M.; Ntouyas, S.: Existence results for multi-valued semilinear functional differential equations, Extracta math. 18, No. 1, 1-12 (2003) · Zbl 1044.34037
[11] Bothe, D.: Multivalued perturbations of m-accretive differential inclusions, Israel J. Math. 108, 109-138 (1998) · Zbl 0922.47048 · doi:10.1007/BF02783044
[12] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. math. Anal. appl. 162, 494-505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[13] Byszewski, L.; Akca, H.: Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear anal. 34, 65-72 (1998) · Zbl 0934.34068 · doi:10.1016/S0362-546X(97)00693-7
[14] Byszewski, L.; Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. anal. 40, 11-19 (1990) · Zbl 0694.34001 · doi:10.1080/00036819008839989
[15] Castaing, C.; Valadier, M.: Convex analysis and measurable multifunctions, Lecture notes in math. 580 (1977) · Zbl 0346.46038
[16] Couchouron, J. -F.; Kamenskii, M.: An abstract topological point of view and a general averaging principle in the theory of differential inclusions, Nonlinear anal. 42, 1101-1129 (2000) · Zbl 0972.34049 · doi:10.1016/S0362-546X(99)00181-9
[17] Crandall, M. G.; Liggett, T.: Generation of semigroups of nonlinear transformations in Banach spaces, Amer. J. Math. 93, 265-298 (1971) · Zbl 0226.47038 · doi:10.2307/2373376
[18] Deimling, K.: Multivalued differential equations, (1992) · Zbl 0760.34002
[19] Diestel, J.: Geometry of Banach spaces--selected topics, Lecture notes in math. 485 (1975) · Zbl 0307.46009
[20] Fan, K.; Glickberg, I.: Some geometric properties of the spheres in a normed linear space, Duke math. J. 25, 553-568 (1958) · Zbl 0084.33101 · doi:10.1215/S0012-7094-58-02550-X
[21] Fu, X.; Ezzinbi, K.: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear anal. 54, 215-227 (2003) · Zbl 1034.34096 · doi:10.1016/S0362-546X(03)00047-6
[22] Garcia-Falset, J.: Existence results and asymptotic behavior for nonlocal abstract Cauchy problems, J. math. Anal. appl. 338, 639-652 (2008) · Zbl 1140.34026 · doi:10.1016/j.jmaa.2007.05.045
[23] Goebel, K.; Kirk, W. A.: Topics in metric fixed point theory, (1990) · Zbl 0708.47031
[24] Hu, S.; Papageorgiou, N. S.: Handbook of multivalued analysis, vol. I: theory, (1997) · Zbl 0887.47001
[25] Hu, S.; Papageorgiou, N. S.: Handbook of multivalued analysis, vol. II: applications, (2000) · Zbl 0943.47037
[26] Jung, J. S.; Park, J. S.: Asymptotic behaviour of nonexpansive sequences and mean points, Proc. amer. Math. soc. 124, 475-480 (1996) · Zbl 0846.47039 · doi:10.1090/S0002-9939-96-03039-0
[27] Kisielewicz, M.: Differential inclusions and optimal control, (1991) · Zbl 0731.49001
[28] Lakshmikantham, V.; Leela, S.: Nonlinear differential equations in abstract spaces, Internat. ser. Nonlinear math. 2 (1981) · Zbl 0456.34002
[29] Lakshmikantham, V.; Bhaskar, T. Gnana; Devi, J. Vasundhara: Theory of set differential equations in metric spaces, (2006) · Zbl 1156.34003
[30] Li, L.; Wu, C.: Set-valued analysis, (2003)
[31] Martin, R. H.: Nonlinear operators and differential equations in Banach spaces, (1976) · Zbl 0333.47023
[32] Ntouyas, S.; Tsamatos, P.: Global existence for semilinear evolution equations with nonlocal conditions, J. math. Anal. appl. 210, 679-687 (1997) · Zbl 0884.34069 · doi:10.1006/jmaa.1997.5425
[33] Olszowy, L.; Wedrychowicz, S.: Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear anal. 72, 2119-2126 (2010) · Zbl 1195.34088 · doi:10.1016/j.na.2009.10.012
[34] Paicu, A.; Vrabie, I.: A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear anal. 72, 4091-4100 (2010) · Zbl 1200.34068 · doi:10.1016/j.na.2010.01.041
[35] Rouhani, B. D.: Asymptotic properties of some non-autonomous system in Banach spaces, J. differential equations 229, 412-425 (2006) · Zbl 1119.34048 · doi:10.1016/j.jde.2006.07.010
[36] Saeidi, S.: On the asymptotic properties of non-autonomous systems, J. evol. Equ. 10, 205-216 (2010) · Zbl 1239.34073
[37] Vrabie, I. I.: Compactness methods for nonlinear evolutions, (1987) · Zbl 0721.47050
[38] Xue, X.; Song, G.: Multivalued perturbation to nonlinear differential inclusions with memory in Banach spaces, Chin. ann. Math. ser. B 17, 237-244 (1996) · Zbl 0851.34016
[39] Xue, X.: Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear anal. 63, 575-586 (2005) · Zbl 1095.34040 · doi:10.1016/j.na.2005.05.019
[40] Zhu, L.; Li, G.: Nonlocal differential equations with multivalued perturbations in Banach spaces, Nonlinear anal. 69, 2843-2850 (2008) · Zbl 1163.34041 · doi:10.1016/j.na.2007.08.057
[41] Zhu, L.; Li, G.: On a nonlocal problem for semilinear differential equations with upper semicontinuous nonlinearities in general Banach spaces, J. math. Anal. appl. 341, 660-675 (2008) · Zbl 1145.34034 · doi:10.1016/j.jmaa.2007.10.041