El-Sayed, A. M. A.; Ahmed, E.; El-Saka, H. A. A. Dynamic properties of the fractional-order logistic equation of complex variables. (English) Zbl 1246.37074 Abstr. Appl. Anal. 2012, Article ID 251715, 12 p. (2012). Summary: We study the dynamic properties (equilibrium points, local and global stability, chaos and bifurcation) of the continuous dynamical system of the logistic equation of complex variables. The existence and uniqueness of uniformly Lyapunov stable solution will be proved. Cited in 11 Documents MSC: 37F99 Dynamical systems over complex numbers 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 34D06 Synchronization of solutions to ordinary differential equations 26A33 Fractional derivatives and integrals 37M99 Approximation methods and numerical treatment of dynamical systems Keywords:chaos synchronization; fractional-order logistic equations in complex variables; equilibrium points; local stability; global stability; chaos and bifurcations Software:DFOC; sysdfod × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. D. Gibbon and M. J. McGuinness, “The real and complex Lorenz equations in rotating fluids and lasers,” Physica D, vol. 5, no. 1, pp. 108-122, 1982. · Zbl 1194.76280 · doi:10.1016/0167-2789(82)90053-7 [2] G. M. Mahmoud, S. A. Aly, and A. A. Farghaly, “On chaos synchronization of a complex two coupled dynamos system,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp. 178-187, 2007. · Zbl 1152.37317 · doi:10.1016/j.chaos.2006.01.036 [3] G. M. Mahmoud, S. A. Aly, and M. A. AL-Kashif, “Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 171-181, 2008. · Zbl 1170.70365 · doi:10.1007/s11071-007-9200-y [4] G. M. Mahmoud, T. Bountis, G. M. AbdEl-Latif, and E. E. Mahmoud, “Chaos synchronization of two different chaotic complex Chen and Lü systems,” Nonlinear Dynamics, vol. 55, no. 1-2, pp. 43-53, 2009. · Zbl 1170.70011 · doi:10.1007/s11071-008-9343-5 [5] C. Z. Ning and H. Haken, “Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations,” Physical Review A, vol. 41, no. 7, pp. 3826-3837, 1990. [6] A. Rauh, L. Hannibal, and N. B. Abraham, “Global stability properties of the complex Lorenz model,” Physica D, vol. 99, no. 1, pp. 45-58, 1996. · Zbl 0887.34048 · doi:10.1016/S0167-2789(96)00129-7 [7] Y. Xu, W. Xu, and G.M. Mahmoud, “On a complex beam-beam interaction model with random forcing,” Physica A, vol. 336, no. 3-4, pp. 347-360, 2004. · doi:10.1016/j.physa.2003.12.030 [8] Y. Xu, W. Xu, and G.M. Mahmoud, “On a complex Duffing system with random excitation,” Chaos, Solitons and Fractals, vol. 35, no. 1, pp. 126-132, 2008. · Zbl 1142.70013 · doi:10.1016/j.chaos.2006.07.016 [9] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542-553, 2007. · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087 [10] A. M. A. El-Sayed, F. M. Gaafar, and H. H. G. Hashem, “On the maximal and minimal solutions of arbitrary-orders nonlinear functional integral and differential equations,” Mathematical Sciences Research Journal, vol. 8, no. 11, pp. 336-348, 2004. · Zbl 1068.45008 [11] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,” Applied Mathematics Letters, vol. 20, no. 7, pp. 817-823, 2007. · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013 [12] R. Gorenflo and F. Mainardi, “Fractional Calculus: Integral and Differential Equations of Fractional Order,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 223-276, Springer, Wien, Austria, 1997. [13] I. Podlubny and A. M. A. El-Sayed, On Two Definitions of Fractional Calculus, Slovak Academy of Science-Institute of Experimental Physics, 1996. [14] I. Podlubny, Fractional Differential Equations, Academic Press Inc., San Diego, Calif, USA, 1999. · Zbl 0924.34008 [15] Y. Suansook and K. Paithoonwattanakij, “Chaos in fractional order logistic model,” in Proceedings of the International Conference on Signal Processing Systems, pp. 297-301, May 2009. · Zbl 1394.92044 [16] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Nonlinear Physical Science, Springer, New York, NY, USA, 2011. [17] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, London, UK, 1977. · Zbl 0448.46002 [18] A. M. A. El-Sayed and Sh. A. Abd El-Salam, “On the stability of a fractional-order differential equation with nonlocal initial condition,” Electronic Journal of Qualitative Theory of Differential Equations, no. 29, pp. 1-8, 2008. · Zbl 1183.34006 [19] A. M. A. El-Sayed, “On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications,” Alexandria Journal of Mathematics, vol. 1, no. 1, 2010. [20] E. Ahmed, A. M. A. El-Sayed, E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for the fractional replicator equation,” International Journal of Modern Physics C, vol. 16, no. 7, pp. 1017-1025, 2005. · Zbl 1080.65536 · doi:10.1142/S0129183105007698 [21] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems,” Physics Letters A, vol. 358, no. 1, pp. 1-4, 2006. · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087 [22] H. A. El-Saka, E. Ahmed, M. I. Shehata, and A. M. A. El-Sayed, “On stability, persistence, and Hopf bifurcation in fractional order dynamical systems,” Nonlinear Dynamics, vol. 56, no. 1-2, pp. 121-126, 2009. · Zbl 1175.37084 · doi:10.1007/s11071-008-9383-x [23] D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Proceedings of the Computational Engineering in Systems and Application multiconference, vol. 2, pp. 963-968, Lille, France, 1996. [24] K. Diethelm, The Analysis of Fractional Differential Equations: An Application- Oriented Exposition Using Differential Operators of Caputo Type (Lecture Notes in Mathematics), Springer-Verlag, Berlin, Germany, 2010. · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2 [25] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for multi-term fractional (arbitrary) orders differential equations,” Computational & Applied Mathematics, vol. 23, no. 1, pp. 33-54, 2004. · Zbl 1213.34025 · doi:10.1590/S0101-82052004000100002 [26] A. E. M. El-Mesiry, A. M. A. El-Sayed, and H. A. A. El-Saka, “Numerical methods for multi-term fractional (arbitrary) orders differential equations,” Applied Mathematics and Computation, vol. 160, no. 3, pp. 683-699, 2005. · Zbl 1062.65073 · doi:10.1016/j.amc.2003.11.026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.