×

Hyers-Ulam stability of Jensen functional inequality in \(p\)-Banach spaces. (English) Zbl 1246.39025

Summary: We prove the Hyers-Ulam stability of the following Jensen functional inequality \(||f((x - y)/n + z) + f((y - z)/n + x) + f((z - x)/n + y)|| \leq || f((x + y + z)||\) in \(p\)-Banach spaces for any fixed nonzero integer \(n\).

MSC:

39B82 Stability, separation, extension, and related topics for functional equations

References:

[1] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, NY, USA, 1960. · Zbl 0086.24101
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[3] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[4] D. G. Bourgin, “Classes of transformations and bordering transformations,” Bulletin of the American Mathematical Society, vol. 57, pp. 223-237, 1951. · Zbl 0043.32902 · doi:10.1090/S0002-9904-1951-09511-7
[5] T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040 · doi:10.2307/2042795
[6] P. G\uavru\cta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994. · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[7] S.-M. Jung, “On the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 204, no. 1, pp. 221-226, 1996. · Zbl 0888.46018 · doi:10.1006/jmaa.1996.0433
[8] T. M. Rassias, “The stability of mappings and related topics ’,” in Report on the 27th ISFE, vol. 39, pp. 292-293, Aequationes mathematicae, 1990.
[9] Z. Gajda, “On stability of additive mappings,” International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 3, pp. 431-434, 1991. · Zbl 0739.39013 · doi:10.1155/S016117129100056X
[10] T. M. Rassias and P. \vSemrl, “On the behavior of mappings which do not satisfy Hyers-Ulam stability,” Proceedings of the American Mathematical Society, vol. 114, no. 4, pp. 989-993, 1992. · Zbl 0761.47004 · doi:10.2307/2159617
[11] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, volume 1, vol. 48 of Colloquium Publications, American Mathematical Society, Providence, RI, USA, 2000. · Zbl 0946.46002
[12] S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific, Warszawa; Reidel, Dordrecht, The Netherlands, 1984.
[13] M. S. Moslehian and A. Najati, “An application of a fixed point theorem to a functional inequality,” Fixed Point Theory, vol. 10, no. 1, pp. 141-149, 2009. · Zbl 1184.39012
[14] H.-M. Kim and E. Son, “Approximate Cauchy functional inequality in quasi-Banach spaces,” Journal of Inequalities and Applications, vol. 2011, article 102, 2011. · Zbl 1272.39020
[15] M. S. Moslehian and G. Sadeghi, “Stability of linear mappings in quasi-Banach modules,” Mathematical Inequalities and Applications, vol. 11, no. 3, pp. 549-557, 2008. · Zbl 1154.39028 · doi:10.7153/mia-11-44
[16] C.-G. Park and T. M. Rassias, “Isometric additive mappings in generalized quasi-Banach spaces,” Banach Journal of Mathematical Analysis, vol. 2, no. 1, pp. 59-69, 2008. · Zbl 1139.39042
[17] J. Tabor, “Stability of the Cauchy functional equation in quasi-Banach spaces,” Annales Polonici Mathematici, vol. 83, no. 3, pp. 243-255, 2004. · Zbl 1101.39021 · doi:10.4064/ap83-3-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.