Kondo, Kei; Tanaka, Minoru Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. III. (English) Zbl 1246.53055 J. Math. Soc. Japan 64, No. 1, 185-200 (2012). Recall that a von Mangoldt surface of revolution is a complete surface of revolution \(\widetilde M \) homeomorphic to \(\mathbb R^2\) with non-increasing Gaussian curvature along each meridian and that the Busemann function on a complete non-compact connected Riemannian manifold \(M\) is a function of a ray \(\gamma\) in \(M\) given by \(F_\gamma(x) = \lim_{t\to\infty}\{t-d(x, \gamma(t))\}\), and a function \(\varphi: M\to \mathbb R\) is called an exhaustion, if \(\varphi^{-1}(-\infty, a]\) is compact for all \(a\in \mathbb R\). In the paper [Math. Ann. 351, No. 2, 251–266 (2011; Zbl 1243.53072)], the authors showed that all Busemann functions on a complete non-compact connected Riemannian manifold \(M\) which is not less curved than a von Mangoldt surface of revolution \(\widetilde{M}\) are exhaustions, if the total curvature of \(\widetilde{M}\) is greater than \(\pi\) and the purpose of the paper under review is to generalize this theorem to a manifold M which is not less curved than a certain more general surface of revolution. Reviewer: Witold Mozgawa (Lublin) Cited in 2 Documents MSC: 53C20 Global Riemannian geometry, including pinching 53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions Keywords:Busemann function; radial curvature; total curvature; von Mangoldt surface; exhaustion Citations:Zbl 1243.53072 Software:Loki PDF BibTeX XML Cite \textit{K. Kondo} and \textit{M. Tanaka}, J. Math. Soc. Japan 64, No. 1, 185--200 (2012; Zbl 1246.53055) Full Text: DOI arXiv OpenURL References: [1] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2), 96 (1972), 415-443. · Zbl 0246.53049 [2] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math., 2 (1935), 63-113. · Zbl 0011.22501 [3] S.Cohn-Vossen, Totalkrümmung und geodätische Linien auf einfach zusammenhängenden offenen volständigen Flächenstücken, Recueil Math. Moscow, 43 (1936), 139-163. · Zbl 0014.27601 [4] U. Dini, Fondamenti per la teorica delle funzioni di variabili reali, Pisa, 1878. · JFM 10.0274.01 [5] D. Gromoll and W. Meyer, On complete manifolds of positive curvature, Ann. of Math. (2), 75 (1969), 75-90. · Zbl 0191.19904 [6] T. Hawkins, Lebesgue’s Theory of Integration: Its origins and development, University of Wiscons · Zbl 0195.33901 [7] A. Kasue, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. École Norm. Sup. (4), 21 (1988), 593-622. · Zbl 0662.53032 [8] N. N. Katz and K. Kondo, Generalized space forms, Trans. Amer. Math. Soc., 354 (2002), 2279-2284. · Zbl 0990.53032 [9] K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below.,I, Math. Ann., 351 (2011), 251-266. · Zbl 1243.53072 [10] K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below.,II, Trans. Amer. Math. Soc., 362 (2010), 6293-6324. · Zbl 1225.53034 [11] K. Kondo and M. Tanaka, Toponogov comparison theorem for open triangles, Tohoku Math. J., 63 (2011), 363-396. · Zbl 1243.53066 [12] F. Morgan, Geometric Measure Theory, A Beginer’s Guide, Academic Press, 1988. · Zbl 0671.49043 [13] K. Shiohama, The role of total curvature on complete noncompact Riemannian 2-manifolds, Illinois J. Math., 28 (1984), 597-620. · Zbl 0551.53022 [14] K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Math., 159 , Cambridge University Press, Cambridge, 2003. · Zbl 1086.53056 [15] M. Tanaka, On the cut loci of a von Mangoldt’s surface of revolution, J. Math. Soc. Japan, 44 (1992), 631-641. · Zbl 0789.53023 [16] M. Tanaka and K. Kondo, The Gaussian curvature of a model surface with finite total curvature is not always bounded., arXiv: [17] V. A. Toponogov, Riemannian spaces containing straight lines (in Russian), Dokl. Akad. Nauk SSSR, 127 (1959), 977-979. · Zbl 0094.34701 [18] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Decker, New York, 1977. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.