Jleli, Mohamed; Karapınar, Erdal; Samet, Bessem Fixed point results for almost generalized cyclic \((\psi, \varphi)\)-weak contractive type mappings with applications. (English) Zbl 1246.54041 Abstr. Appl. Anal. 2012, Article ID 917831, 17 p. (2012). Summary: We define a class of almost generalized cyclic \((\psi, \varphi)\)-weak contractive mappings and discuss the existence and uniqueness of fixed points for such mappings. We present some examples to illustrate our results. Moreover, we state some applications of our main results in nonlinear integral equations. Cited in 8 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 47H10 Fixed-point theorems 45G05 Singular nonlinear integral equations Keywords:almost generalized cyclic \((\psi, \varphi)\)-weak contractive type mappings; nonlinear integral equations. PDF BibTeX XML Cite \textit{M. Jleli} et al., Abstr. Appl. Anal. 2012, Article ID 917831, 17 p. (2012; Zbl 1246.54041) Full Text: DOI References: [1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales,” Fundamenta Mathematicae, vol. 3, pp. 133-181, 1922. · JFM 48.0201.01 [2] R. M. Tiberio Bianchini, “Su un problema di S. Reich riguardante la teoria dei punti fissi,” vol. 5, pp. 103-108, 1972. · Zbl 0249.54023 [3] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de l’Académie Bulgare des Sciences, vol. 25, pp. 727-730, 1972. · Zbl 0274.54033 [4] Y. J. Cho, P. P. Murthy, and G. Jungck, “A common fixed point theorem of Meir and Keeler type,” International Journal of Mathematics and Mathematical Sciences, vol. 16, no. 4, pp. 669-674, 1993. · Zbl 0790.54054 [5] Y. J. Cho, P. P. Murthy, and G. Jungck, “A theorem of Meir-Keeler type revisited,” International Journal of Mathematics and Mathematical Sciences, vol. 23, no. 7, pp. 507-511, 2000. · Zbl 0957.54022 [6] Y. J. E. Cho, R. Saadati, and G. Sadeghi, “Quasi-contractive mappings in modular metric spaces,” Journal of Applied Mathematics, Article ID 907951, 5 pages, 2012. · Zbl 1235.54029 [7] L. Ćirić, M. Abbas, R. Saadati, and N. Hussain, “Common fixed points of almost generalized contractive mappings in ordered metric spaces,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5784-5789, 2011. · Zbl 1206.54040 [8] D. Dorić, “Common fixed point for generalized (\psi ,\varphi )-weak contractions,” Applied Mathematics Letters, vol. 22, no. 12, pp. 1896-1900, 2009. · Zbl 1203.54040 [9] G. E. Hardy and T. D. Rogers, “A generalization of a fixed point theorem of Reich,” Canadian Mathematical Bulletin, vol. 16, pp. 201-206, 1973. · Zbl 0266.54015 [10] G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no. 4, pp. 261-263, 1976. · Zbl 0321.54025 [11] G. Jungck, “Compatible mappings and common fixed points. II,” International Journal of Mathematics and Mathematical Sciences, vol. 11, no. 2, pp. 285-288, 1988. · Zbl 0647.54035 [12] R. Kannan, “Some results on fixed points,” Bulletin of the Calcutta Mathematical Society, vol. 60, pp. 71-76, 1968. · Zbl 0209.27104 [13] A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, pp. 326-329, 1969. · Zbl 0194.44904 [14] W. Sintunavarat and P. Kumam, “Common fixed point theorems for generalized J H-operator classes and invariant approximations,” Journal of Inequalities and Applications, vol. 2011, article 67, 2011. · Zbl 1270.47041 [15] W. Sintunavarat and P. Kumam, “Generalized common fixed point theorems in complex valued metric spaces and applications,” Journal of Inequalities and Applications, vol. 2012, article 84, 2012. · Zbl 1295.54090 [16] W. A. Kirk, P. S. Srinivasan, and P. Veeramani, “Fixed points for mappings satisfying cyclical contractive conditions,” Fixed Point Theory, vol. 4, no. 1, pp. 79-89, 2003. · Zbl 1052.54032 [17] R. P. Agarwal, M. A. Alghamdi, and N. Shahzad, “Fixed point theory for cyclic generalized contractions in partial metric spaces,” Fixed Point Theory and Applications, vol. 2012, article 40, 2012. · Zbl 1477.54033 [18] E. Karapınar, “Fixed point theory for cyclic weak \varphi -contraction,” Applied Mathematics Letters, vol. 24, no. 6, pp. 822-825, 2011. · Zbl 1256.54073 [19] E. Karapınar and K. Sadaranagni, “Fixed point theory for cyclic (\psi ,\varphi )-contractions,” Fixed Point Theory and Applications, vol. 2011, asrticle 69, 2011. [20] E. Karapınar, N. Shobkolaei, S. Sedghi, and S. M. Vaezpour, “A common fixed point theorem for cyclic operators on partial metric spaces,” Filomat, vol. 26, no. 2, pp. 407-414, 2012. · Zbl 1289.54129 [21] E. Karapınar, “Best proximity points of cyclic mappings,” Applied Mathematics Letters, vol. 25, no. 11, pp. 1761-1766, 2012. · Zbl 1269.47040 [22] E. Karapınar and \DI. M. Erhan, “Cyclic contraction and fixed point theorems,” Filomat, vol. 26, no. 4, pp. 777-782, 2012. · Zbl 1289.47106 [23] E. Karapınar, \DI. M. Erhan, and A. Y. Ulus, “Fixed point theorem for cyclic maps on partial metric spaces,” Applied Mathematics & Information Sciences, vol. 6, no. 1, pp. 239-244, 2012. [24] M. P\uacurar and I. A. Rus, “Fixed point theory for cyclic \varphi -contractions,” Nonlinear Analysis, vol. 72, no. 3-4, pp. 1181-1187, 2010. · Zbl 1191.54042 [25] M. A. Petric, “Some results concerning cyclical contractive mappings,” General Mathematics, vol. 18, no. 4, pp. 213-226, 2010. · Zbl 1289.54146 [26] I. A. Rus, “Cyclic representations and fixed points,” Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, vol. 3, pp. 171-178, 2005. [27] V. Berinde, “Approximating fixed points of weak contractions using the Picard iteration,” Nonlinear Analysis Forum, vol. 9, no. 1, pp. 43-53, 2004. · Zbl 1078.47042 [28] V. Berinde, “General constructive fixed point theorems for Cric-type almost contractions in metric spaces,” Carpathian Journal of Mathematics, vol. 24, no. 2, pp. 10-19, 2008. · Zbl 1199.54209 [29] T. Zamfirescu, “Fixed point theorems in metric spaces,” Archiv der Mathematik, vol. 23, pp. 292-298, 1972. · Zbl 0239.54030 [30] M. Abbas, G. V. R. Babu, and G. N. Alemayehu, “On common fixed points of weakly compatible mappings satisfying ‘generalized condition (B)’,” Filomat, vol. 25, no. 2, pp. 9-19, 2011. · Zbl 1265.54140 [31] V. Berinde and M. P\uacurar, “Fixed points and continuity of almost contractions,” Fixed Point Theory, vol. 9, no. 1, pp. 23-34, 2008. · Zbl 1152.54031 [32] B. Samet and C. Vetro, “Berinde mappings in orbitally complete metric spaces,” Chaos, Solitons & Fractals, vol. 44, no. 12, pp. 1075-1079, 2011. · Zbl 1270.54054 [33] T. Suzuki, “Fixed point theorems for Berinde mappings,” Bulletin of the Kyushu Institute of Technology. Pure and Applied Mathematics, no. 58, pp. 13-19, 2011. · Zbl 1244.54100 [34] W. Sintunavarat and P. Kumam, “Common fixed point theorem for hybrid generalized multi-valued contraction mappings,” Applied Mathematics Letters, vol. 25, pp. 52-57, 2012. · Zbl 1231.54029 [35] W. Sintunavarat and P. Kumam, “Weak condition for generalized multi-valued (f, \alpha ,\beta )-weak contraction mappings,” Applied Mathematics Letters, vol. 24, no. 4, pp. 460-465, 2011. · Zbl 1206.54064 [36] W. Sintunavarat and P. Kumam, “Common fixed point theorem for hybrid generalized multi-valued contraction mappings,” Applied Mathematics Letters, vol. 25, no. 1, pp. 52-57, 2012. · Zbl 1231.54029 [37] C. Mongkolkeha and P. Kumam, “Best proximity point theorems for generalized cyclic contractions in ordered metric spaces,” Journal of Optimization Theory and Applications. In press. · Zbl 1257.54041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.