zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Common fixed point theorems for a class of twice power type contraction maps in $G$-metric spaces. (English) Zbl 1246.54052
Summary: We introduce a new twice power type contractive condition for three mappings in $G$-metric spaces, and several new common fixed point theorems are established in complete $G$-metric space. An example is provided to support our result. The results obtained in this paper differ from other comparable results already known.

MSC:
54H25Fixed-point and coincidence theorems in topological spaces
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
WorldCat.org
Full Text: DOI
References:
[1] Z. Mustafa and B. Sims, “A new approach to generalized metric spaces,” Journal of Nonlinear and Convex Analysis, vol. 7, no. 2, pp. 289-297, 2006. · Zbl 1111.54025
[2] M. Abbas and B. E. Rhoades, “Common fixed point results for noncommuting mappings without continuity in generalized metric spaces,” Applied Mathematics and Computation, vol. 215, no. 1, pp. 262-269, 2009. · Zbl 1185.54037 · doi:10.1016/j.amc.2009.04.085
[3] Z. Mustafa, H. Obiedat, and F. Awawdeh, “Some fixed point theorem for mapping on complete G-metric spaces,” Fixed Point Theory and Applications, vol. 2008, Article ID 189870, 12 pages, 2008. · Zbl 1148.54336 · doi:10.1155/2008/189870 · eudml:54664
[4] Z. Mustafa, W. Shatanawi, and M. Bataineh, “Existence of fixed point results in G-metric spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 2009, Article ID 283028, 10 pages, 2009. · Zbl 1179.54066 · doi:10.1155/2009/283028 · eudml:45716
[5] Z. Mustafa and B. Sims, “Fixed point theorems for contractive mappings in complete G-metric spaces,” Fixed Point Theory and Applications, Article ID 917175, 10 pages, 2009. · Zbl 1179.54067 · doi:10.1155/2009/917175 · eudml:45503
[6] Z. Mustafa, F. Awawdeh, and W. Shatanawi, “Fixed point theorem for expansive mappings in G-metric spaces,” International Journal of Contemporary Mathematical Sciences, vol. 5, no. 49-52, pp. 2463-2472, 2010. · Zbl 1284.54065
[7] Z. Mustafa and H. Obiedat, “A fixed point theorem of Reich in G-metric spaces,” Cubo, vol. 12, no. 1, pp. 83-93, 2010. · Zbl 1220.54030 · doi:10.4067/S0719-06462010000100008
[8] Z. Mustafa, M. Khandagji, and W. Shatanawi, “Fixed point results on complete G-metric spaces,” Studia Scientiarum Mathematicarum Hungarica, vol. 48, no. 3, pp. 304-319, 2011. · Zbl 1249.54084 · doi:10.1556/SScMath.48.2011.3.1170
[9] S. Manro, S. S. Bhatia, and S. Kumar, “Expansion mappings theorems in G-metric spaces,” International Journal of Contemporary Mathematical Sciences, vol. 5, no. 49-52, pp. 2529-2535, 2010. · Zbl 1284.54060
[10] W. Shatanawi, “Fixed point theory for contractive mappings satisfying \Phi -maps in G-metric spaces,” Fixed Point Theory and Applications, vol. 2010, Article ID 181650, 9 pages, 2010. · Zbl 1204.54039 · doi:10.1155/2010/181650 · eudml:232392
[11] R. Chugh, T. Kadian, A. Rani, and B. E. Rhoades, “Property P in G-metric spaces,” Fixed Point Theory and Applications, vol. 2010, Article ID 401684, 12 pages, 2010. · Zbl 1203.54037 · doi:10.1155/2010/401684 · eudml:227131
[12] M. Abbas, T. Nazir, and S. Radenović, “Some periodic point results in generalized metric spaces,” Applied Mathematics and Computation, vol. 217, no. 8, pp. 4094-4099, 2010. · Zbl 1210.54049 · doi:10.1016/j.amc.2010.10.026
[13] H. Obiedat and Z. Mustafa, “Fixed point results on a nonsymmetric G-metric spaces,” Jordan Journal of Mathematics and Statistics, vol. 3, no. 2, pp. 65-79, 2010. · Zbl 1279.54028
[14] M. Abbas, T. Nazir, and P. Vetro, “Common fixed point results for three maps in G-metric spaces,” Filomat, vol. 25, no. 4, pp. 1-17, 2011. · Zbl 1265.54141 · doi:10.2298/FIL1104001A
[15] K. P. R. Rao, A. Sombabu, and J. Rajendra Prasad, “A common fixed point theorem for six expansive mappings in G-metric spaces,” Kathmandu University Journal of Science, Engineering and Technology, vol. 7, no. 1, pp. 113-120, 2011.
[16] M. Abbas, T. Nazir, and R. Saadati, “Common fixed point results for three maps in generalized metric space,” Advances in Difference Equations, vol. 49, pp. 1-20, 2011. · Zbl 1269.54016
[17] S. Manro, S. Kumar, and S. S. Bhatia, “R-weakly commuting maps in G-metric spaces,” Polytechnica Posnaniensis, no. 47, pp. 11-18, 2011. · Zbl 1237.54055
[18] L. Gajić and Z. Lozanov-Crvenković, “A fixed point result for mappings with contractive iterate at a point in G-metric spaces,” Filomat, vol. 25, no. 2, pp. 53-58, 2011. · Zbl 1289.54124 · doi:10.2298/FIL1102053G
[19] R. K. Vats, S. Kumar, and V. Sihag, “Some common fixed point theorem for compatible mappings of type (A) in complete G-metric space,” Advances in Fuzzy Mathematics, vol. 6, no. 1, pp. 27-38, 2011. · Zbl 1237.54064
[20] H. Aydi, “A fixed point result involving a generalized weakly contractive condition in G-metric spaces,” Bulletin Mathematical Analysis and Applications, vol. 3, no. 4, pp. 180-188, 2011. · Zbl 1314.47072
[21] M. Abbas, S. H. Khan, and T. Nazir, “Common fixed points of R-weakly commuting maps in generalized metric spaces,” Fixed Point Theory and Applications, vol. 2011, article 41, 2011. · Zbl 1271.54069 · doi:10.1186/1687-1812-2011-41
[22] H. Aydi, W. Shatanawi, and C. Vetro, “On generalized weak G-contraction mapping in G-metric spaces,” Computers & Mathematics with Applications, vol. 62, no. 11, pp. 4222-4229, 2011. · Zbl 1236.54036 · doi:10.1016/j.camwa.2011.10.007
[23] W. Shatanawi, “Coupled fixed point theorems in generalized metric spaces,” Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 3, pp. 441-447, 2011. · Zbl 1230.54047
[24] R. K. Vats, S. Kumar, and V. Sihag, “Fixed point theorems in complete G-metric space,” Fasciculi Mathematici, no. 47, pp. 127-139, 2011. · Zbl 1237.54064
[25] M. Abbas, A. R. Khan, and T. Nazir, “Coupled common fixed point results in two generalized metric spaces,” Applied Mathematics and Computation, vol. 217, no. 13, pp. 6328-6336, 2011. · Zbl 1210.54048 · doi:10.1016/j.amc.2011.01.006
[26] A. Kaewcharoen, “Common fixed point theorems for contractive mappings satisfying \Phi -maps in G-metric spaces,” Banach Journal of Mathematical Analysis, vol. 6, no. 1, pp. 101-111, 2012. · Zbl 1253.54042
[27] M. Abbas, T. Nazir, and D. Dorić, “Common fixed point of mappings satisfying (E.A) property in generalized metric spaces,” Applied Mathematics and Computation, vol. 218, no. 14, pp. 7665-7670, 2012. · Zbl 1244.54083 · doi:10.1016/j.amc.2011.11.113
[28] R. Saadati, S. M. Vaezpour, P. Vetro, and B. E. Rhoades, “Fixed point theorems in generalized partially ordered G-metric spaces,” Mathematical and Computer Modelling, vol. 52, no. 5-6, pp. 797-801, 2010. · Zbl 1202.54042 · doi:10.1016/j.mcm.2010.05.009
[29] B. S. Choudhury and P. Maity, “Coupled fixed point results in generalized metric spaces,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 73-79, 2011. · Zbl 1225.54016 · doi:10.1016/j.mcm.2011.01.036
[30] H. Aydi, B. Damjanović, B. Samet, and W. Shatanawi, “Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces,” Mathematical and Computer Modelling, vol. 54, no. 9-10, pp. 2443-2450, 2011. · Zbl 1237.54043 · doi:10.1016/j.mcm.2011.05.059
[31] N. V. Luong and N. X. Thuan, “Coupled fixed point theorems in partially ordered G-metric spaces,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 1601-1609, 2012. · Zbl 06131066 · doi:10.1016/j.mcm.2011.10.058
[32] M. Abbas, M. Ali Khan, and S. Radenović, “Common coupled fixed point theorems in cone metric spaces for w-compatible mappings,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 195-202, 2010. · Zbl 1197.54049 · doi:10.1016/j.amc.2010.05.042
[33] I. Beg, M. Abbas, and T. Nazir, “Generalized cone metric spaces,” Journal of Nonlinear Science and Applications, vol. 3, no. 1, pp. 21-31, 2010. · Zbl 1203.54035 · emis:journals/TJNSA/no9.htm · eudml:228962
[34] F. Gu and Z. He, “The common fixed point theorems for a class of twice power type \Phi -contraction mapping,” Journal of Shangqiu Teachers College, vol. 22, no. 5, pp. 27-323, 2006.