×

Proper local scoring rules on discrete sample spaces. (English) Zbl 1246.62010

Summary: A scoring rule is a loss function measuring the quality of a quoted probability distribution \(Q\) for a random variable \(X\), in the light of the realized outcome \(x\) of \(X\); it is proper if the expected score, under any distribution \(P\) for \(X\), is minimized by quoting \(Q=P\). Using the fact that any differentiable proper scoring rule on a finite sample space \(\mathcal X\) is the gradient of a concave homogeneous function, we consider when such a rule can be local in the sense of depending only on the probabilities quoted for points in a nominated neighborhood of \(x\). Under mild conditions, we characterize such a proper local scoring rule in terms of a collection of homogeneous functions on the cliques of an undirected graph on the space \(\mathcal X\). A useful property of such rules is that the quoted distribution \(Q\) need only be known up to a scale factor. Examples of the use of such scoring rules include Besag’s pseudo-likelihood and Hyvärinen’s method of ratio matching.

MSC:

62C99 Statistical decision theory
05C90 Applications of graph theory

References:

[1] Bernardo, J.-M. (1979). Expected information as expected utility. Ann. Statist. 7 686-690. · Zbl 0407.62002 · doi:10.1214/aos/1176344689
[2] Besag, J. (1975). Statistical analysis of non-lattice data. J. Roy. Statist. Soc. Ser. D ( The Statistician ) 24 179-195.
[3] Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review 78 1-3.
[4] Czado, C., Gneiting, T. and Held, L. (2009). Predictive model assessment for count data. Biometrics 65 1254-1261. · Zbl 1180.62162 · doi:10.1111/j.1541-0420.2009.01191.x
[5] Dawid, A. P. (1986). Probability forecasting. In Encyclopedia of Statistical Sciences (S. Kotz, N. L. Johnson and C. B. Read, eds.) 7 210-218. Wiley, New York.
[6] Dawid, A. P. (2007). The geometry of proper scoring rules. Ann. Inst. Statist. Math. 59 77-93. · Zbl 1108.62009 · doi:10.1007/s10463-006-0099-8
[7] Dawid, A. P. and Lauritzen, S. L. (2005). The geometry of decision theory. In Proceedings of the Second International Symposium on Information Geometry and Its Applications 22-28. Univ. Tokyo, Tokyo, Japan.
[8] Ehm, W. and Gneiting, T. (2012). Local proper scoring rules of order two. Ann. Statist. 40 609-637. · Zbl 1246.86013
[9] Good, I. J. (1971). Comment on “Measuring information and uncertainty,” by Robert J. Buehler. In Foundations of Statistical Inference (V. P. Godambe and D. A. Sprott, eds.) 337-339. Holt, Rinehart and Winston, Toronto.
[10] Grimmett, G. R. (1973). A theorem about random fields. Bull. Lond. Math. Soc. 5 81-84. · Zbl 0261.60043 · doi:10.1112/blms/5.1.81
[11] Hendrickson, A. D. and Buehler, R. J. (1971). Proper scores for probability forecasters. Ann. Math. Statist. 42 1916-1921. · Zbl 0231.62018 · doi:10.1214/aoms/1177693057
[12] Hyvärinen, A. (2007). Some extensions of score matching. Comput. Statist. Data Anal. 51 2499-2512. · Zbl 1161.62326
[13] Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17 . Clarendon Press, Oxford, UK. · Zbl 0907.62001
[14] McCarthy, J. (1956). Measures of the value of information. Proc. Nat. Acad. Sci. 42 654-655. · Zbl 0072.37501 · doi:10.1073/pnas.42.9.654
[15] Parry, M. F., Dawid, A. P. and Lauritzen, S. L. (2012). Proper local scoring rules. Ann. Statist. 40 561-592. · Zbl 1246.62011
[16] Rockafellar, R. T. (1970). Convex Analysis. Princeton Mathematical Series 28 . Princeton Univ. Press, Princeton, NJ. · Zbl 0193.18401
[17] Zelterman, D. (1988). Robust estimation in truncated discrete distributions with application to capture-recapture experiments. J. Statist. Plann. Inference 18 225-237. · Zbl 0642.62021 · doi:10.1016/0378-3758(88)90007-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.