Cavalier, Laurent; Golubev, Yuri K. Risk hull method and regularization by projections of ill-posed inverse problems. (English) Zbl 1246.62082 Ann. Stat. 34, No. 4, 1653-1677 (2006). Summary: We study a standard method of regularization by projections of the linear inverse problem \(Y=Af+\epsilon \), where \(\epsilon\) is a white Gaussian noise, and \(A\) is a known compact operator with singular values converging to zero with polynomial decay. The unknown function \(f\) is recovered by a projection method using the singular value decomposition of \(A\). The bandwidth choice of this projection regularization is governed by a data-driven procedure which is based on the principle of risk hull minimization. We provide nonasymptotic upper bounds for the mean square risk of this method and we show, in particular, that in numerical simulations this approach may substantially improve the classical method of unbiased risk estimation. Cited in 1 ReviewCited in 40 Documents MSC: 62G05 Nonparametric estimation 62G20 Asymptotic properties of nonparametric inference 62M99 Inference from stochastic processes 65C60 Computational problems in statistics (MSC2010) Keywords:quadratic risk; oracle inequality × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267–281. Akadémiai Kiadó, Budapest. · Zbl 0283.62006 [2] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301–413. · Zbl 0946.62036 · doi:10.1007/s004400050210 [3] Bertero, M. and Boccacci, P. (1998). Introduction to Inverse Problems in Imaging . Institute of Physics Publishing, Bristol. · Zbl 0914.65060 [4] Birgé, L. and Massart, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3 203–268. · Zbl 1037.62001 · doi:10.1007/s100970100031 [5] Cavalier, L., Golubev, G. K., Picard, D. and Tsybakov, A. B. (2002). Oracle inequalities for inverse problems. Ann. Statist. 30 843–874. · Zbl 1029.62032 · doi:10.1214/aos/1028674843 [6] Cavalier, L., Golubev, Yu., Lepski, O. and Tsybakov, A. (2003). Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems. Theory Probab. Appl. 48 426–446. · Zbl 1130.62313 · doi:10.1137/S0040585X97980555 [7] Cavalier, L. and Tsybakov, A. B. (2002). Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields 123 323–354. · Zbl 1039.62031 · doi:10.1007/s004400100169 [8] Donoho, D. L. (1995). Nonlinear solutions of linear inverse problems by wavelet–vaguelette decomposition. Appl. Comput. Harmon. Anal. 2 101–126. · Zbl 0826.65117 · doi:10.1006/acha.1995.1008 [9] Efromovich, S. (1997). Robust and efficient recovery of a signal passed through a filter and then contaminated by non-Gaussian noise. IEEE Trans. Inform. Theory 43 1184–1191. · Zbl 0881.93081 · doi:10.1109/18.605581 [10] Engl, H. W., Hanke, M. and Neubauer, A. (1996). Regularization of Inverse Problems . Kluwer, Dordrecht. · Zbl 0859.65054 [11] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257–1272. · Zbl 0729.62033 · doi:10.1214/aos/1176348248 [12] Golubev, Yu. (2004). The principle of penalized empirical risk in severely ill-posed problems. Probab. Theory Related Fields 130 18–38. · Zbl 1064.62011 · doi:10.1007/s00440-004-0362-y [13] Golubev, Yu. and Levit, B. (2004). An oracle approach to adaptive estimation of linear functionals in a Gaussian model. Math. Methods Statist. 13 392–408. · Zbl 1129.62020 [14] Hackbusch, W. (1995). Integral Equations. Theory and Numerical Treatment . Birkhäuser, Basel. · Zbl 0823.65139 [15] Hida, T. (1980). Brownian Motion . Springer, New York. · Zbl 0423.60063 [16] Johnstone, I. M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adaptivity results. Statist. Sinica 9 51–83. · Zbl 1065.62519 [17] Johnstone, I. M. and Silverman, B. W. (1990). Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18 251–280. · Zbl 0699.62043 · doi:10.1214/aos/1176347500 [18] Lavrentiev, M. M. (1967). Some Improperly Posed Problems of Mathematical Physics . Springer, Berlin. · Zbl 0149.41902 [19] Mair, B. and Ruymgaart, F. H. (1996). Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math. 56 1424–1444. JSTOR: · Zbl 0864.62020 · doi:10.1137/S0036139994264476 [20] Mallows, C. L. (1973). Some comments on \(C_p\). Technometrics 15 661–675. · Zbl 0269.62061 · doi:10.2307/1267380 [21] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statist. Sci. 1 502–527. · Zbl 0625.62110 · doi:10.1214/ss/1177013525 [22] Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135–1151. · Zbl 0476.62035 · doi:10.1214/aos/1176345632 [23] Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems . Winston, Washington. · Zbl 0354.65028 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.