On the estimation of integrated covariance matrices of high dimensional diffusion processes. (English) Zbl 1246.62182

Summary: We consider the estimation of integrated covariance (ICV) matrices of high dimensional diffusion processes based on high frequency observations. We start by studying the most commonly used estimator, the realized covariance (RCV) matrix. We show that in the high dimensional case when the dimension \(p\) and the observation frequency \(n\) grow at the same rate, the limiting spectral distribution (LSD) of RCV depends on the covolatility process not only through the targeting ICV, but also on how the covolatility process varies in time. We establish a Marčenko-Pastur type theorem for weighted sample covariance matrices, based on which we obtain a Marčenko-Pastur type theorem for RCV for a class \(\mathcal C\) of diffusion processes. The results explicitly demonstrate how the time variability of the covolatility process affects the LSD of RCV. We further propose an alternative estimator, the time-variation adjusted realized covariance (TVARCV) matrix. We show that for processes in the class \(\mathcal C\), the TVARCV possesses have the desirable property that its LSD depends solely on that of the targeting ICV through the Marčenko-Pastur equation, and hence, in particular, the TVARCV can be used to recover the empirical spectral distribution of the ICV by using existing algorithms.


62M05 Markov processes: estimation; hidden Markov models
62H12 Estimation in multivariate analysis
62E20 Asymptotic distribution theory in statistics
62G30 Order statistics; empirical distribution functions
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI arXiv Euclid


[1] Admati, A. R. and Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability. Rev. Financ. Stud. 1 3-40.
[2] Andersen, T. G. and Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance 4 115-158.
[3] Andersen, T. G. and Bollerslev, T. (1998). Deutsche mark-dollar volatility: Intraday activity patterns, macroeconomic announcements, and longer run dependencies. J. Finance 53 219-265.
[4] Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2001). The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc. 96 42-55. · Zbl 1015.62107
[5] Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611-677. · Zbl 0949.60077
[6] Bai, Z., Chen, J. and Yao, J. (2010). On estimation of the population spectral distribution from a high-dimensional sample covariance matrix. Aust. N. Z. J. Stat. 52 423-437. · Zbl 1373.62245
[7] Bai, Z., Liu, H. and Wong, W.-K. (2009). Enhancement of the applicability of Markowitz’s portfolio optimization by utilizing random matrix theory. Math. Finance 19 639-667. · Zbl 1185.91155
[8] Bai, Z. D. and Silverstein, J. W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 316-345. · Zbl 0937.60017
[9] Barndorff-Nielsen, O. E. and Shephard, N. (2004). Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica 72 885-925. · Zbl 1141.91634
[10] Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2011). Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. J. Econometrics 162 149-169. · Zbl 1441.62599
[11] El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices using random matrix theory. Ann. Statist. 36 2757-2790. · Zbl 1168.62052
[12] Fan, J., Li, Y. and Yu, K. (2011). Vast volatility matrix estimation using high frequency data for portfolio selection. J. Amer. Statist. Assoc. · Zbl 1328.91266
[13] Geronimo, J. S. and Hill, T. P. (2003). Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform. J. Approx. Theory 121 54-60. · Zbl 1030.44003
[14] Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis . Cambridge Univ. Press, Cambridge. Corrected reprint of the 1985 original. · Zbl 0704.15002
[15] Jacod, J. and Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 267-307. · Zbl 0937.60060
[16] Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. ( N.S. ) 72 507-536. · Zbl 0152.16101
[17] Markowitz, H. (1952). Portfolio selection. J. Finance 7 77-91.
[18] Markowitz, H. M. (1959). Portfolio Selection : Efficient Diversification of Investments. Cowles Foundation for Research in Economics at Yale University , Monograph 16 . Wiley, New York.
[19] Mestre, X. (2008). Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory 54 5113-5129. · Zbl 1318.62191
[20] Silverstein, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal. 55 331-339. · Zbl 0851.62015
[21] Silverstein, J. W. and Bai, Z. D. (1995). On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J. Multivariate Anal. 54 175-192. · Zbl 0833.60038
[22] Silverstein, J. W. and Choi, S.-I. (1995). Analysis of the limiting spectral distribution of large-dimensional random matrices. J. Multivariate Anal. 54 295-309. · Zbl 0872.60013
[23] Tao, M., Wang, Y., Yao, Y. and Zou, J. (2011). Large volatility matrix inference via combining low-frequency and high-frequency approaches. J. Amer. Statist. Assoc. 106 1025-1040. · Zbl 1229.62141
[24] Wang, Y. and Zou, J. (2010). Vast volatility matrix estimation for high-frequency financial data. Ann. Statist. 38 943-978. · Zbl 1183.62184
[25] Yin, Y. Q. (1986). Limiting spectral distribution for a class of random matrices. J. Multivariate Anal. 20 50-68. · Zbl 0614.62060
[26] Zheng, X. and Li, Y. (2011). Supplement to “On the estimation of integrated covariance matrices of high dimensional diffusion processes.” . · Zbl 1246.62182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.