×

A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. (English) Zbl 1246.65105

Summary: We develop an explicit symmetric linear phase-fitted four-step method with a free coefficient as parameter. The parameter is used for the optimization of the method in order to solve efficiently the Schrödinger equation and related oscillatory problems. We evaluate the local truncation error and the interval of periodicity as functions of the parameter. We reveal a direct relationship between the periodicity interval and the local truncation error. We also measure the efficiency of the new method for a wide range of possible values of the parameter and compare it to other well known methods from the literature. The analysis and the numerical results help us to determine the optimal values of the parameter, which render the new method highly efficient.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
34A30 Linear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ixaru, L. G.; Vanden Berghe, G., Exponential Fitting (2004), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1105.65082
[2] Kalogiratou, Z.; Monovasilis, T.; Simos, T. E., Symplectic integrators for the numerical solution of the schrodinger equation, Journal of Computational and Applied Mathematics, 158, 1, 83-92 (2003) · Zbl 1027.65171
[3] Kosti, A. A.; Anastassi, Z. A.; Simos, T. E., An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems, Journal of Mathematical Chemistry, 47, 1, 315-330 (2010) · Zbl 1200.81052
[4] Kosti, A. A.; Anastassi, Z. A.; Simos, T. E., An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems, Computer Physics Communications, 183, 3, 470-479 (2011) · Zbl 1264.65111
[5] Kosti, A. A.; Anastassi, Z. A.; Simos, T. E., Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems, Computers and Mathematics with Applications, 61, 11, 3381-3390 (2011) · Zbl 1222.65066
[6] Lambert, J.; Watson, I., Symmetric multistep methods for periodic initial values problems, Journal of the Institute of Mathematics and its Applications, 18, 189-202 (1976) · Zbl 0359.65060
[7] Mazzia, F.; Sestini, A.; Trigiante, D., BS linear multistep methods on non-uniform meshes, Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), 1, 1, 131-144 (2006) · Zbl 1120.65090
[8] Monovasilis, T.; Kalogiratou, Z.; Simos, T. E., Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems, Computer Physics Communications, 177, 757-763 (2007) · Zbl 1196.65192
[9] Panopoulos, G. A.; Anastassi, Z. A.; Simos, T. E., A symmetric eight-step Predictor-Corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions, Computer Physics Communications, 182, 8, 1626-1637 (2011) · Zbl 1262.65084
[10] Panopoulos, G. A.; Anastassi, Z. A.; Simos, T. E., Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger Equation and related problems, Communications in Mathematical and in Computer Chemistry (MATCH), 60, 773-785 (2008) · Zbl 1199.65236
[11] Psihoyios, G.; Simos, T. E., A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions, Journal of Computational and Applied Mathematics, 175, 137-147 (2005) · Zbl 1063.65060
[12] Qaisi, M. I., Analytical solution of the forced duffing’s oscillator, Journal of Sound and Vibration, 194, 4, 513-520 (1996) · Zbl 1232.70025
[13] G.D. Quinlan, Resonances and instabilities in symmetric multistep methods, 1999. arXiv:astro-ph/9901136v1; G.D. Quinlan, Resonances and instabilities in symmetric multistep methods, 1999. arXiv:astro-ph/9901136v1
[14] Quinlan, G. D.; Tremaine, S., Symmetric multistep methods for the numerical integration of planetary orbits, The Astronomical Journal, 100, 5 (1990)
[15] Raptis, A. D.; Allison, A. C., Exponential-fitting methods for the numerical solution of the Schrödinger equation, Computer Physics Communications, 14, 1 (1978)
[16] Raptis, A. D.; Simos, T. E., A four-step phase-fitted method for the numerical integration of second order initial-value problems, BIT, 31, 160-168 (1991) · Zbl 0726.65089
[17] Simos, T. E., A \(P\)-stable exponentially-fitted method for the numerical integration of the Schrödinger equation, Molecular Simulation, 31, 14-15, 1095-1100 (2005) · Zbl 1082.81027
[18] Simos, T. E., An accurate exponentially-fitted explicit four-step method for the numerical solution of the radial Schrödinger equation, International Journal of Modern Physics A, 13, 2613-2626 (1998) · Zbl 0929.65043
[19] Simos, T. E., An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems, Journal of Computational and Applied Mathematics, 55, 125-133 (1994) · Zbl 0823.65067
[20] Simos, T. E., Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution, Applied Mathematics Letters, 17, 5, 601-607 (2004) · Zbl 1062.65075
[21] Simos, T. E., Exponentially and trigonometrically fitted methods for the solution of the schrodinger equation, Acta Applicandae Mathematicae, 110, 3, 1331-1352 (2010) · Zbl 1192.65111
[22] Simos, T. E., Exponentially-fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions, Applied Mathematics Letters, 15, 2, 217-225 (2002) · Zbl 1003.65081
[23] Simos, T. E., High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems, Computer Physics Communications, 178, 199-207 (2008) · Zbl 1196.65194
[24] Simos, T. E., Some low-order two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of the radial Schrödinger equation, International Journal of Modern Physics A, 10, 2431-2438 (1995)
[25] Simos, T. E.; Williams, P. S., A finite-difference method for the numerical solution of the Schrödinger equation, Journal of Computational and Applied Mathematics, 79, 189-205 (1997) · Zbl 0877.65054
[26] Simos, T. E.; Williams, P. S., Some modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations and related problems, International Journal of Modern Physics A, 11, 4731-4744 (1996) · Zbl 0985.65529
[27] Thomas, R. M., Phase properties of high order almost \(P\)-stable formulae, BIT, 24, 225-238 (1984) · Zbl 0569.65052
[28] Anastassi, Z. A.; Simos, T. E., Numerical multistep methods for the efficient solution of quantum mechanics and related problems, Physics Reports, 482-483, 1-240 (2009) · Zbl 1182.65110
[29] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover: Dover New York · Zbl 0515.33001
[30] Ixaru, L.; Rizea, M., A numerov-like scheme for the numerical-solution of the Schrödinger-equation in the deep continuum spectrum of energies, Computer Physics Communications, 19, 23-27 (1980)
[31] Aceto, L.; Pandolfi, R.; Trigiante, D., Stability analysis of linear multistep methods via polynomial type variation, Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), 2, 1-2, 1-9 (2007) · Zbl 1130.65079
[32] Alolyan, I.; Simos, T. E., A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation, Journal of Mathematical Chemistry, 49, 3, 711-764 (2011) · Zbl 1217.65143
[33] Alolyan, I.; Simos, T. E., High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation, Journal of Mathematical Chemistry, 48, 4, 925-958 (2010) · Zbl 1202.81027
[34] Alolyan, I.; Simos, T. E., Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation, Journal of Mathematical Chemistry, 48, 4, 1092-1143 (2010) · Zbl 1202.81028
[35] Alolyan, I.; Simos, T. E., On eight-step methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation, Communications in Mathematical and in Computer Chemistry (MATCH), 66, 2, 473-546 (2011) · Zbl 1217.65143
[36] Amodio, P.; Sgura, I., High order finite difference schemes for the solution of second order BVPs, Journal of Computational and Applied Mathematics, 176, 59-76 (2005) · Zbl 1073.65061
[37] Amodio, P.; Iavernaro, F., Symmetric boundary value methods for second order initial and boundary value problems, Mediterranean Journal of Mathematics, 3, 383-398 (2006) · Zbl 1117.65107
[38] Anastassi, Z. A., A new symmetric linear eight-step method with fifth trigonometric order for the efficient integration of the Schrödinger equation, Applied Mathematics Letters, 24, 8, 1468-1472 (2011) · Zbl 1217.65144
[39] Anastassi, Z. A.; Simos, T. E., A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation, Journal of Mathematical Chemistry, 41, 79-100 (2007) · Zbl 1125.81017
[40] Anastassi, Z. A.; Simos, T. E., New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation, Communications in Mathematical and in Computer Chemistry (MATCH), 60, 733-752 (2008) · Zbl 1199.65228
[41] Anastassi, Z. A.; Simos, T. E., A six-step p-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation, Communications in Mathematical and in Computer Chemistry (MATCH), 60, 3, 803-830 (2008) · Zbl 1199.65229
[42] Anastassi, Z. A.; Simos, T. E., Trigonometrically fitted fifth order runge-kutta methods for the numerical solution of the Schrödinger equation, Mathematical and Computer Modelling, 42, 7-8, 877-886 (2005) · Zbl 1085.65063
[43] Anastassi, Z. A.; Simos, T. E., Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation, Journal of Mathematical Chemistry, 37, 281-293 (2005) · Zbl 1070.81035
[44] Capper, S. D.; Cash, J. R.; Moore, D. R., Lobatto-obrechkoff formulae for 2nd order two-point boundary value problems, Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), 1, 1, 13-25 (2006) · Zbl 1108.65080
[45] Coleman, J.; Ixaru, L., P-stability and exponential-fitting methods for \(y'' = f(x, y)\), IMA Journal of Numerical Analysis, 16, 179-199 (1996) · Zbl 0847.65052
[46] Van de Vyver, H., Phase-fitted and amplification-fitted two-step hybrid methods for \(y'' = f(x, y)\), Journal of Computational and Applied Mathematics, 209, 1, 33-53 (2007) · Zbl 1141.65061
[47] Vigo-Aguiar, J.; Ferrandiz, J. M.; Simos, T. E., Encke methods adapted to regularizing variables, International Journal of Modern Physics A, 25, 3993-4010 (2000) · Zbl 0970.70014
[48] Wang, Z., \(P\)-stable linear symmetric multistep methods for periodic initial-value problems, Computer Physics Communications, 171, 162-174 (2005) · Zbl 1196.65113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.