## The application of the homotopy perturbation method and the homotopy analysis method to the generalized Zakharov equations.(English)Zbl 1246.65193

Summary: We introduce two powerful methods to solve the generalized Zakharov (GZ) equations; one is the homotopy perturbation method (HPM) and the other is the homotopy analysis method (HAM). The homotopy perturbation method is proposed for solving the generalized Zakharov equations. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions; the homotopy analysis method is applied to solve the generalized Zakharov equations. HAM is a strong and easy-to-use analytic tool for nonlinear problems. Computation of the absolute errors between the exact solutions of the GZ equations and the approximate solutions, comparison of the HPM results with those of Adomian’s decomposition method and the HAM results, and computation the absolute errors between the exact solutions of the GZ equations with the HPM solutions and HAM solutions are presented.

### MSC:

 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 35Q53 KdV equations (Korteweg-de Vries equations) 35Q35 PDEs in connection with fluid mechanics 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text:

### References:

 [1] D. D. Ganji and M. Rafei, “Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method,” Physics Letters A, vol. 356, no. 2, pp. 131-137, 2006. · Zbl 1160.35517 · doi:10.1016/j.physleta.2006.03.039 [2] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3 [3] J.-H. He, “Asymptotology by homotopy perturbation method,” Applied Mathematics and Computation, vol. 156, no. 3, pp. 591-596, 2004. · Zbl 1061.65040 · doi:10.1016/j.amc.2003.08.011 [4] J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2 [5] J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 26, no. 3, pp. 695-700, 2005. · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006 [6] J.-H. He, “Comparison of homotopy perturbation method and homotopy analysis method,” Applied Mathematics and Computation, vol. 156, no. 2, pp. 527-539, 2004. · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008 [7] D. D. Ganji, A. R. Sahouli, and M. Famouri, “A new modification of He’s homotopy perturbation method for rapid convergence of nonlinear undamped oscillators,” Journal of Applied Mathematics and Computing, vol. 30, no. 1-2, pp. 181-192, 2009. · Zbl 1180.34011 · doi:10.1007/s12190-008-0165-x [8] M. Rafei and D. D. Ganji, “Explicit solutions of helmholtz equation and fifth-order kdv equation using homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 3, pp. 321-328, 2006. · Zbl 1160.35517 [9] S. Abbasbandy, “Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 485-490, 2006. · Zbl 1088.65063 · doi:10.1016/j.amc.2005.02.014 [10] S. Abbasbandy, “Numerical solutions of the integral equations: homotopy perturbation method and Adomian’s decomposition method,” Applied Mathematics and Computation, vol. 173, no. 1, pp. 493-500, 2006. · Zbl 1090.65143 · doi:10.1016/j.amc.2005.04.077 [11] J. H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005. · Zbl 1401.65085 [12] S. Abbasbandy, “Application of he’s homotopy perturbation method for laplace transform,” Chaos, Solitons & Fractals, vol. 30, no. 5, pp. 1206-1212, 2006. · Zbl 1142.65417 · doi:10.1016/j.chaos.2005.08.178 [13] D. D. Ganji and A. Sadighi, “Application of he’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 411-418, 2006. [14] M. Rafei, D. D. Ganji, and H. Daniali, “Solution of the epidemic model by homotopy perturbation method,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 1056-1062, 2007. · Zbl 1112.92054 · doi:10.1016/j.amc.2006.09.019 [15] A. Yildirim and T. Özi\cs, “Solutions of singular ivps of lane-emden type by homotopy perturbation method,” Physics Letters, Section A, vol. 369, no. 1-2, pp. 70-76, 2007. · Zbl 1209.65120 · doi:10.1016/j.physleta.2007.04.072 [16] A. Yildirim, “Exact solutions of nonlinear differential-difference equations by he’s homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp. 111-114, 2008. [17] S. J. Liao, The proposed homotopy analysis technique fot the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992. [18] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, vol. 2 of CRC Series: Modern Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. · Zbl 1051.76001 [19] S. Liao, “On the homotopy analysis method for nonlinear problems,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 499-513, 2004. · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7 [20] S. Liao, “Comparison between the homotopy analysis method and homotopy perturbation method,” Applied Mathematics and Computation, vol. 169, no. 2, pp. 1186-1194, 2005. · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058 [21] S. Abbasbandy, “The application of homotopy analysis method to solve a generalized hirota-satsuma coupled kdv equation,” Physics Letters, Section A, vol. 361, no. 6, pp. 478-483, 2007. · Zbl 1273.65156 · doi:10.1016/j.physleta.2006.09.105 [22] S. Abbasbandy, “The application of homotopy analysis method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 360, no. 1, pp. 109-113, 2006. · Zbl 1236.80010 · doi:10.1016/j.physleta.2006.07.065 [23] H. A. Zedan, “Exact solutions for the generalized KdV equation by using Backlund transformations,” Journal of the Franklin Institute, vol. 348, no. 8, pp. 1751-1768, 2011. · Zbl 1231.35219 · doi:10.1016/j.jfranklin.2011.04.013 [24] H. A. Zedan, “Symmetry analysis of an integrable Ito coupled system,” Computers & Mathematics with Applications, vol. 60, no. 12, pp. 3088-3097, 2010. · Zbl 1207.35263 · doi:10.1016/j.camwa.2010.10.010 [25] M. M. Rashidi, G. Domairry, and S. Dinarvand, “Approximate solutions for the burger and regularized long wave equations by means of the homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 708-717, 2009. · Zbl 1168.35428 · doi:10.1016/j.cnsns.2007.09.015 [26] B. Malomed, D. Anderson, M. Lisak, M. L. Quiroga-Teixeiro, and L. Stenflo, “Dynamics of solitary waves in the zakharov model equations,” Physical Review E, vol. 55, no. 1, pp. 962-968, 1997. [27] Y.-Y. Wang, C.-Q. Dai, L. Wu, and J.-F Zhang, “Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method,” Chaos, Solitons & Fractals, vol. 32, no. 3, pp. 1208-1214, 2007. · Zbl 1130.35120 · doi:10.1016/j.chaos.2005.11.071 [28] S. Abbasbandy, E. Babolian, and M. Ashtiani, “Numerical solution of the generalized Zakharov equation by homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 12, pp. 4114-4121, 2009. · Zbl 1221.65269 · doi:10.1016/j.cnsns.2009.03.001 [29] M. Javidi and A. Golbabai, “Exact and numerical solitary wave solutions of generalized zakharov equation by the variational iteration method,” Chaos, Solitons & Fractals, vol. 36, no. 2, pp. 309-313, 2008. · Zbl 1350.35182 · doi:10.1016/j.chaos.2006.06.088 [30] L. Cveticanin, “Homotopy-perturbation method for pure nonlinear differential equation,” Chaos, Solitons & Fractals, vol. 30, no. 5, pp. 1221-1230, 2006. · Zbl 1142.65418 · doi:10.1016/j.chaos.2005.08.180 [31] J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.