zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of multistage homotopy perturbation method to the chaotic Genesio system. (English) Zbl 1246.65241
Summary: Finding accurate solution of chaotic system by using efficient existing numerical methods is very hard for its complex dynamical behaviors. In this paper, the multistage homotopy-perturbation method (MHPM) is applied to the chaotic Genesio system. The MHPM is a simple reliable modification based on an adaptation of the standard homotopy-perturbation method (HPM). The HPM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the chaotic Genesio system. Numerical comparisons between the MHPM and the classical fourth-order Runge-Kutta (RK4) solutions are made. The results reveal that the new technique is a promising tool for the nonlinear chaotic systems of ordinary differential equations.

65P20Numerical chaos
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
Full Text: DOI
[1] R. Genesio and A. Tesi, “Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems,” Automatica, vol. 28, no. 3, pp. 531-548, 1992. · Zbl 0765.93030 · doi:10.1016/0005-1098(92)90177-H
[2] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[3] M. J. Ablowitz, B. M. Herbst, and C. Schober, “Homotopy perturbation method and axisymmetric flow over a stretching sheet,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 399-406, 2006.
[4] L. Cveticanin, “The homotopy-perturbation method applied for solving complex-valued differential equations with strong cubic nonlinearity,” Journal of Sound and Vibration, vol. 285, no. 4-5, pp. 1171-1179, 2005. · Zbl 1238.65085 · doi:10.1016/j.jsv.2004.10.026
[5] J. H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, Die Deutsche Bibliothek, Berlin, Germany, 2006.
[6] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[7] M. A. Noor and S. T. Mohyud-Din, “An efficient algorithm for solving fifth-order boundary value problems,” Mathematical and Computer Modelling, vol. 45, no. 7-8, pp. 954-964, 2007. · Zbl 1133.65052 · doi:10.1016/j.mcm.2006.09.004
[8] M. El-Shahed, “Application of He’s homotopy perturbation method to Volterra’s integro-differential equation,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 163-168, 2005.
[9] J. H. He, “Analytical methods for thermal science-an elementary introduction,” Thermal Science, vol. 15, supplement 1, pp. S1-S3, 2011. · doi:10.2298/TSCI11S1001H
[10] H. E. Ji-Huan, “A note on the homotopy perturbation method,” Thermal Science, vol. 14, no. 2, pp. 565-568, 2010.
[11] M. S. H. Chowdhury, I. Hashim, and S. Momani, “The multistage homotopy-perturbation method: a powerful scheme for handling the Lorenz system,” Chaos, Solitons and Fractals, vol. 40, no. 4, pp. 1929-1937, 2009. · Zbl 1198.65135 · doi:10.1016/j.chaos.2007.09.073
[12] M. S. H. Chowdhury and I. Hashim, “Application of multistage homotopy-perturbation method for the solutions of the Chen system,” Nonlinear Analysis. Real World Applications, vol. 10, no. 1, pp. 381-391, 2009. · Zbl 1154.65350 · doi:10.1016/j.nonrwa.2007.09.014
[13] I. Hashim and M. S. H. Chowdhury, “Adaptation of homotopy-perturbation method for numeric-analytic solution of system of ODEs,” Physics Letters A, vol. 372, no. 4, pp. 470-481, 2008. · Zbl 1217.81054 · doi:10.1016/j.physleta.2007.07.067
[14] I. Hashim, M. S. H. Chowdhury, and S. Mawa, “On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model,” Chaos, Solitons and Fractals, vol. 36, no. 4, pp. 823-827, 2008. · Zbl 1210.65149 · doi:10.1016/j.chaos.2007.09.009