×

Do consistent \(F(R)\) models mimic general relativity plus \(\Lambda\)? (English) Zbl 1246.83160

Summary: Modified gravity models are subject to a number of consistency requirements which restrict the form that the function \(F(R)\) can take. We study a particular class of \(F(R)\) functions which satisfy various constraints that have been found in the literature. These models have a late time accelerating epoch, and an acceptable matter era. We calculate the Friedmann equation for our models, and show that in order to satisfy the constraints we impose, they must mimic general relativity plus \(\Lambda \) throughout the cosmic history, with exponentially suppressed corrections. We also find that the free parameters in our model must be fine tuned to obtain an acceptable late time accelerating phase. We discuss the generality of this conclusion.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Magnano, G.; Sokolowski, L. M., Phys. Rev. D, 50, 5039 (1994)
[2] Woodard, R. P.
[3] Chiba, T., Phys. Lett. B, 575, 1 (2003)
[4] Dolgov, A. D.; Kawasaki, M., Phys. Lett. B, 573, 1 (2003)
[5] Brookfield, A. W.; van de Bruck, C.; Hall, L. M.H., Phys. Rev. D, 74, 064028 (2006)
[6] Sotiriou, T. P., Phys. Lett. B, 645, 389 (2007)
[7] De Felice, A.; Hindmarsh, M.; Trodden, M., JCAP, 0608, 005 (2006)
[8] Faulkner, T.; Tegmark, M.; Bunn, E. F.; Mao, Y.
[9] Carroll, S. M.; De Felice, A.; Duvvuri, V.; Easson, D. A.; Trodden, M.; Turner, M. S., Phys. Rev. D, 71, 063513 (2005)
[10] Nojiri, S.; Odintsov, S. D., Gen. Relativ. Gravit., 36, 1765 (2004)
[11] Amendola, L.; Polarski, D.; Tsujikawa, S., Phys. Rev. Lett., 98, 131302 (2007)
[12] Fay, S.; Nesseris, S.; Perivolaropoulos, L.
[13] Amarzguioui, M.; Elgaroy, O.; Mota, D. F.; Multamaki, T.
[14] Capozziello, S.; Nojiri, S.; Odintsov, S. D.; Troisi, A., Phys. Lett. B, 639, 135 (2006)
[15] Nojiri, S.; Odintsov, S. D., Phys. Rev. D, 74, 086005 (2006)
[16] Nojiri, S.; Odintsov, S. D.
[17] Vollick, D. N., Class. Quantum Grav., 21, 3813 (2004)
[18] Flanagan, E. E., Phys. Rev. Lett., 92, 071101 (2004)
[19] Nunez, A.; Solganik, S.
[20] Nojiri, S.; Odintsov, S. D., Phys. Rev. D, 68, 123512 (2003)
[21] Nunez, A.; Solganik, S., Phys. Lett. B, 608, 189 (2005)
[22] Amendola, L.; Gannouji, R.; Polarski, D.; Tsujikawa, S., Phys. Rev. D, 75, 083504 (2007)
[23] Nojiri, S.; Odintsov, S. D., Int. J. Geom. Meth. Mod. Phys., 4, 115 (2007)
[24] Nunez, A.; Solganik, S., Phys. Lett. B, 608, 189 (2005)
[25] Faraoni, V., Phys. Rev. D, 74, 023529 (2006)
[26] Faraoni, V.; Nadeau, S., Phys. Rev. D, 72, 124005 (2005)
[27] Zhang, P.
[28] Gottlöber, S.; Möller, V.; Starobinsky, A. A., Phys. Rev. D, 43, 2510 (1991)
[29] de la Cruz-Dombriz, A.; Dobado, A., Phys. Rev. D, 74, 087501 (2006)
[30] Bean, R.; Bernat, D.; Pogosian, L.; Silvestri, A.; Trodden, M., Phys. Rev. D, 75, 064020 (2007)
[31] Sawicki, I.; Hu, W., Phys. Rev. D, 75, 127502 (2007)
[32] Starobinsky, A. A., Phys. Lett. B, 91, 99 (1980)
[33] Starobinsky, A. A., JETP Lett., 34, 438 (1981)
[34] Starobinsky, A. A., Sov. Astron. Lett., 9, 302 (1983)
[35] Vilenkin, A., Phys. Rev. D, 32, 2511 (1985)
[36] Tkachev, I. I., Phys. Rev. D, 45, R4367 (1992)
[37] Dick, R., Gen. Relativ. Gravit., 36, 217 (2004)
[38] Song, Y.-S.; Hu, W.; Sawicki, I., Phys. Rev. D, 75, 044004 (2007)
[39] Pechlaner, E.; Sexl, R., Commun. Math. Phys., 2, 165 (1966)
[40] Amendola, L.; Tsujikawa, S.
[41] Hu, W.; Sawicki, I.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.