Serra, Oriol; Zémor, Gilles Large sets with small doubling modulo \(p\) are well covered by an arithmetic progression. (English) Zbl 1247.11130 Ann. Inst. Fourier 59, No. 5, 2043-2060 (2009). Summary: We prove that there is a small but fixed positive integer \(\varepsilon\) such that for every prime \(p\) larger than a fixed integer, every subset \(S\) of the integers modulo \(p\) which satisfies \(|2S|\leq (2+\varepsilon)|S|\) and \(2(|2S|)-2|S|+3\leq p\) is contained in an arithmetic progression of length \(|2S|-|S|+1\). This is the first result of this nature which places no unnecessary restrictions on the size of \(S\). Cited in 7 Documents MSC: 11P70 Inverse problems of additive number theory, including sumsets 11B30 Arithmetic combinatorics; higher degree uniformity 11B25 Arithmetic progressions Keywords:sumset; arithmetic progression; additive combinatorics PDF BibTeX XML Cite \textit{O. Serra} and \textit{G. Zémor}, Ann. Inst. Fourier 59, No. 5, 2043--2060 (2009; Zbl 1247.11130) Full Text: DOI arXiv EuDML References: [1] Bilu, Y. F.; Lev, V. F.; Ruzsa, I. Z., Rectification principles in additive number theory, Discrete Comput. Geom., 19, 3, 343-353 (1998) · Zbl 0899.11002 [2] Freĭman, G. A., The addition of finite sets. I, Izv. Vysš. Učebn. Zaved. Matematika, 1959, 6-13, 202-213 (1959) · Zbl 0096.25904 [3] Freĭman, G. A., Inverse problems in additive number theory. Addition of sets of residues modulo a prime, Dokl. Akad. Nauk SSSR, 141, 571-573 (1961) · Zbl 0109.27203 [4] Freĭman, G. A., Foundations of a structural theory of set addition (1973) · Zbl 0271.10044 [5] Green, Ben; Ruzsa, Imre Z., Sets with small sumset and rectification, Bull. London Math. Soc., 38, 1, 43-52 (2006) · Zbl 1155.11307 [6] Hamidoune, Yahya O., On the connectivity of Cayley digraphs, European J. Combin., 5, 4, 309-312 (1984) · Zbl 0561.05028 [7] Hamidoune, Yahya O., An isoperimetric method in additive theory, J. Algebra, 179, 2, 622-630 (1996) · Zbl 0842.20029 [8] Hamidoune, Yahya O., Subsets with small sums in abelian groups. I. The Vosper property, European J. Combin., 18, 5, 541-556 (1997) · Zbl 0883.05065 [9] Hamidoune, Yahya O., Some results in additive number theory. I. The critical pair theory, Acta Arith., 96, 2, 97-119 (2000) · Zbl 0985.11011 [10] Hamidoune, Yahya O.; Rødseth, Øystein J., An inverse theorem mod \(p\), Acta Arith., 92, 3, 251-262 (2000) · Zbl 0945.11003 [11] Hamidoune, Yahya O.; Serra, Oriol; Zémor, Gilles, On the critical pair theory in \(\mathbb{Z}/p\mathbb{Z} \), Acta Arith., 121, 2, 99-115 (2006) · Zbl 1147.11060 [12] Hamidoune, Yahya O.; Serra, Oriol; Zémor, Gilles, On the critical pair theory in abelian groups: beyond Chowla’s theorem, Combinatorica, 28, 4, 441-467 (2008) · Zbl 1192.11071 [13] Lev, Vsevolod F.; Smeliansky, Pavel Y., On addition of two distinct sets of integers, Acta Arith., 70, 1, 85-91 (1995) · Zbl 0817.11005 [14] Nathanson, Melvyn B., Additive number theory, 165 (1996) · Zbl 0859.11002 [15] Rødseth, Øystein J., On Freiman’s 2.4-Theorem, Skr. K. Nor. Vidensk. Selsk., 4, 11-18 (2006) · Zbl 1162.11010 [16] Ruzsa, Imre Z., An application of graph theory to additive number theory, Sci. Ser. A Math. Sci. (N.S.), 3, 97-109 (1989) · Zbl 0743.05052 [17] Serra, Oriol; Zémor, Gilles, On a generalization of a theorem by Vosper, Integers (2000) · Zbl 0953.11031 [18] Tao, Terence; Vu, Van, Additive combinatorics, 105 (2006) · Zbl 1127.11002 [19] Vosper, A. G., The critical pairs of subsets of a group of prime order, J. London Math. Soc., 31, 200-205 (1956) · Zbl 0072.03402 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.