Integral group ring of the Mathieu simple group \(M_{24}\). (English) Zbl 1247.16032

Continuing a series of papers by the authors, for instance, a recent one is [Stud. Sci. Math. Hung. 47, No. 1, 1-11 (2010; Zbl 1221.16026)], for the integral group ring of the Mathieu simple group \(M_{24}\) the Kimmerle conjecture on prime graphs is verified by a method due to I. S. Luthar and I. B. S. Passi.


16U60 Units, groups of units (associative rings and algebras)
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16S34 Group rings
20D08 Simple groups: sporadic groups


Zbl 1221.16026
Full Text: DOI arXiv


[1] V. A. Artamonov and A. A. Bovdi, Algebra, Topology, Geometry 27 (Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989) pp. 3–43.
[2] DOI: 10.1016/j.jalgebra.2010.05.026 · Zbl 1228.16037
[3] Bovdi V., Sci. Math. Jpn. 69 pp 353–
[4] DOI: 10.1090/S0025-5718-2010-02376-2 · Zbl 1209.16026
[5] DOI: 10.1017/CBO9780511721212.016
[6] Bovdi V., Algebra Discrete Math. 2 pp 43–
[7] DOI: 10.1080/00927870802068045 · Zbl 1148.16027
[8] Bovdi V., Ukraïn. Mat. Zh. 61 pp 3–
[9] Bovdi V., Studia Sci. Math. Hungar. 47 pp 1–
[10] Bovdi V., J. Comput. Math. 11 pp 28–
[11] Bovdi V., Publ. Math. Debrecen 72 pp 487–
[12] DOI: 10.1007/BF03031434 · Zbl 1125.16020
[13] DOI: 10.4153/CJM-1965-058-2 · Zbl 0132.27404
[14] Conway J. H., Maximal subgroups and ordinary characters for simple groups, in: Atlas of Finite Groups (1985) · Zbl 0568.20001
[15] DOI: 10.1142/S1005386706000290 · Zbl 1097.16009
[16] Jansen C., London Mathematical Society Monographs. New Series 11, in: An Atlas of Brauer Characters (1995)
[17] DOI: 10.1090/conm/420/07977
[18] DOI: 10.1007/BF02874643 · Zbl 0678.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.