×

zbMATH — the first resource for mathematics

Quiver Hecke algebras and 2-Lie algebras. (English) Zbl 1247.20002
This important paper provides an introduction to some basic constructions and results related to quiver Hecke algebras and \(2\)-representation theory of Kac-Moody algebras. Section 2 is an introduction to nil (affine) Hecke algebras of type \(A\). The author recalls basic properties of Hecke algebras of the symmetric group, provides a construction for the nil Hecke algebras via BGG-Demazure operators and constructs symmetrizing forms.
Section 3 is devoted to quiver Hecke algebras. The author proposes a new simpler definition for these algebras by showing that the more complicated relation from the original definition follows from the other ones. Further, the author constructs a faithful polynomial representation and explains the relation with affine Hecke algebras (for type \(A\) quivers). Finally, it is explained how to put together all quiver Hecke algebras associated with a quiver to obtain a monoidal category that categorifies a half Kac-Moody algebra and its quantum version.
Section 4 introduces \(2\)-Kac-Moody algebras (which categorify the usual Kac-Moody algebras) and discusses their \(2\)-representations (which categorify integrable representations of the corresponding Kac-Moody algebras). The authors provides some results which allow one to check that a category is equipped with a structure of an integrable \(2\)-representation and explains the universal construction of “simple” \(2\)-representations with a detailed description for \(\mathfrak{sl}_2\). At the end of the section the author explains construction of Fock spaces from representations of symmetric groups in this framework.
The last section describes geometric methods available in the case of symmetrizable Kac-Moody algebras. The author shows that Lusztig’s category of perverse sheaves on the moduli space of representations of a quiver is equivalent to the monoidal category of quiver Hecke algebras. This provides a relation to Lusztig’s canonical basis. Finally, the author shows that microlocalization categories of sheaves can be endowed with the structure of a \(2\)-representation isomorphic to the universal simple \(2\)-representation, which again is applied to establish a connection with Lusztig’s canonical basis.

MSC:
20C08 Hecke algebras and their representations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
16G20 Representations of quivers and partially ordered sets
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] DOI: 10.1090/ulect/026 · doi:10.1090/ulect/026
[2] DOI: 10.1007/s000290050047 · Zbl 0981.17001 · doi:10.1007/s000290050047
[3] DOI: 10.1007/s00222-009-0204-8 · Zbl 1201.20004 · doi:10.1007/s00222-009-0204-8
[4] DOI: 10.1016/j.aim.2009.06.018 · Zbl 1241.20003 · doi:10.1016/j.aim.2009.06.018
[5] Brundan J., Moscow Mathematical Journal 11
[6] DOI: 10.1215/00127094-2010-035 · Zbl 1228.14011 · doi:10.1215/00127094-2010-035
[7] Chriss N., Representation Theory and Complex Geometry (1997)
[8] DOI: 10.4007/annals.2008.167.245 · Zbl 1144.20001 · doi:10.4007/annals.2008.167.245
[9] DOI: 10.1007/978-3-642-58097-0 · doi:10.1007/978-3-642-58097-0
[10] Hiller H., Geometry of Coxeter Groups (1982) · Zbl 0483.57002
[11] DOI: 10.1017/CBO9780511626234 · doi:10.1017/CBO9780511626234
[12] DOI: 10.1090/S1088-4165-09-00346-X · Zbl 1188.81117 · doi:10.1090/S1088-4165-09-00346-X
[13] Khovanov M., Quantum Topol. 1 pp 1–
[14] DOI: 10.1090/S0002-9947-2010-05210-9 · Zbl 1214.81113 · doi:10.1090/S0002-9947-2010-05210-9
[15] DOI: 10.1017/CBO9780511542800 · doi:10.1017/CBO9780511542800
[16] DOI: 10.1007/978-1-4612-0105-2 · doi:10.1007/978-1-4612-0105-2
[17] DOI: 10.1007/s10240-008-0012-5 · Zbl 1191.14003 · doi:10.1007/s10240-008-0012-5
[18] DOI: 10.1007/s00209-008-0348-z · Zbl 1188.14002 · doi:10.1007/s00209-008-0348-z
[19] DOI: 10.1016/j.aim.2010.06.003 · Zbl 1219.17012 · doi:10.1016/j.aim.2010.06.003
[20] DOI: 10.1007/s10468-009-9188-8 · Zbl 1286.17014 · doi:10.1007/s10468-009-9188-8
[21] DOI: 10.1016/j.aim.2011.06.009 · Zbl 1246.17017 · doi:10.1016/j.aim.2011.06.009
[22] Lusztig G., Introduction to Quantum Groups (1993) · Zbl 0788.17010
[23] DOI: 10.1090/ulect/015 · doi:10.1090/ulect/015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.