zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniqueness of positive solutions for a class of fractional boundary value problems. (English) Zbl 1247.34011
Summary: The work is concerned with the existence and uniqueness of positive solutions for the following fractional boundary value problem: $$ \cases \bold D^\nu_0+u(t)+h(t)f(t,u(t))=0, \quad 0<t<1,n-1<\nu\leq n, &\\ u(0)=u'(0)=\cdots=u^{(n-2)}(0)=0, &\\ [\bold D^\alpha_{0+}u(t)]_{t=1}=0, \quad 1\leq \alpha \leq n-2, \endcases $$ where $n \in \Bbb N$ and $\bold D^\nu_0+$ is the standard Riemann-Liouville fractional derivative of order $\nu$. Our main results are formulated in terms of spectral radii of some related linear integral operators, and the nonlinearity $f$ is considered to grow only sublinearly.

34A08Fractional differential equations
34B18Positive solutions of nonlinear boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Goodrich, C. S.: Existence of a positive solution to a class of fractional differential equations, Appl. math. Lett. 23, 1050-1055 (2010) · Zbl 1204.34007 · doi:10.1016/j.aml.2010.04.035
[2] Goodrich, C. S.: Existence of a positive solution to systems of differential equations of fractional order, Comput. math. Appl. 62, 1251-1268 (2011) · Zbl 1253.34012
[3] Liang, S.; Zhang, J.: Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear anal. 71, 5545-5550 (2009) · Zbl 1185.26011 · doi:10.1016/j.na.2009.04.045
[4] Xu, X.; Jiang, D.; Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear anal. 71, 4676-4688 (2009) · Zbl 1178.34006 · doi:10.1016/j.na.2009.03.030
[5] Zhao, Y.; Sun, S.; Han, Z.; Li, Q.: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. nonlinear sci. Numer. simul. 16, 2086-2097 (2011) · Zbl 1221.34068 · doi:10.1016/j.cnsns.2010.08.017
[6] Krein, M.; Rutman, M.: Linear operators leaving invariant a cone in a Banach space, Trans. amer. Math. soc. 10, 199-325 (1962)
[7] Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cones, (1988) · Zbl 0661.47045